1887

Abstract

Cell division in rod-shaped bacteria nearly always occurs exactly at mid-cell and is dependent on the formation of the cytokinetic FtsZ ring and its associated division proteins. Many thousands of copies of division, or septum-specific proteins assemble at this site and may lead to the exclusion of other integral membrane proteins that are normally able to diffuse freely throughout the cytoplasmic membrane. In this study we have investigated the localization of a series of integral membrane proteins in and we show that the recruitment of division and septum-specific proteins does not necessarily preclude the diffusion of other integral membrane proteins. However, some proteins, namely ATP synthase and succinate dehydrogenase, are reduced/absent from the mid-cell region at the onset of cell division, which may reflect an association with lipid domains rich in phosphatidylglycerol that are thought to be present at diminished levels at sites of cell division.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.2007/013268-0
2008-01-01
2019-10-17
Loading full text...

Full text loading...

/deliver/fulltext/micro/154/1/64.html?itemId=/content/journal/micro/10.1099/mic.0.2007/013268-0&mimeType=html&fmt=ahah

References

  1. Anagnostopoulos, C. & Spizizen, J. ( 1961; ). Requirements for transformation in Bacillus subtilis. J Bacteriol 81, 741–746.
    [Google Scholar]
  2. Beall, B. & Lutkenhaus, J. ( 1991; ). FtsZ in Bacillus subtilis is required for vegetative septation and for asymmetric septation during sporulation. Genes Dev 5, 447–455.[CrossRef]
    [Google Scholar]
  3. Binenbaum, Z., Klyman, E. & Fishov, I. ( 1999; ). Division-associated changes in membrane viscosity of Escherichia coli. Biochimie 81, 921–929.[CrossRef]
    [Google Scholar]
  4. Dalbey, R. E. & Chen, M. ( 2004; ). Sec-translocase mediated membrane protein biogenesis. Biochim Biophys Acta 1694, 37–53.[CrossRef]
    [Google Scholar]
  5. Davies, K. M. & Lewis, P. J. ( 2003; ). Localization of rRNA synthesis in Bacillus subtilis: characterization of loci involved in transcription focus formation. J Bacteriol 185, 2346–2353.[CrossRef]
    [Google Scholar]
  6. Davies, K. M., Dedman, A., van Horck, S. & Lewis, P. J. ( 2005; ). The NusA : RNA polymerase ratio is increased at sites of rRNA synthesis in Bacillus subtilis. Mol Microbiol 57, 366–379.[CrossRef]
    [Google Scholar]
  7. de Mendoza, D., Schujman, G. E. & Aguilar, P. S. ( 2002; ). Biosynthesis and function of membrane lipids. In Bacillus subtilis and its Closest Relatives: from Genes to Cells, pp. 43–55. Edited by A. L. Sonenshine, J. A. Hoch & R. Losick. Washington, DC: ASM Press.
  8. Errington, J., Daniel, R. A. & Scheffers, D.-J. ( 2003; ). Cytokinesis in bacteria. Microbiol Mol Biol Rev 67, 52–65.[CrossRef]
    [Google Scholar]
  9. Feucht, A. & Lewis, P. J. ( 2001; ). Improved plasmid vectors for the production of multiple fluorescent protein fusions in Bacillus subtilis. Gene 264, 289–297.[CrossRef]
    [Google Scholar]
  10. Fishov, I. & Woldringh, C. L. ( 1999; ). Visualization of membrane domains in Escherichia coli. Mol Microbiol 32, 1166–1172.[CrossRef]
    [Google Scholar]
  11. Gilson, P. R. & Beech, P. L. ( 2001; ). Cell division protein FtsZ: running rings around bacteria, chloroplasts and mitochondria. Res Microbiol 152, 3–10.[CrossRef]
    [Google Scholar]
  12. Hamoen, L. W., Meile, J. C., de Jong, W., Noirot, P. & Errington, J. ( 2006; ). SepF, a novel FtsZ-interacting protein required for a late step in cell division. Mol Microbiol 59, 989–999.[CrossRef]
    [Google Scholar]
  13. Harry, E., Monahan, L. & Thompson, L. ( 2006; ). Bacterial cell division: the mechanism and its precision. Int Rev Cytol 253, 27–94.
    [Google Scholar]
  14. Jenkinson, H. F. ( 1983; ). Altered arrangement of proteins in the spore coat of a germination mutant of Bacillus subtilis. J Gen Microbiol 129, 1945–1958.
    [Google Scholar]
  15. Johnson, A. S., van Horck, S. & Lewis, P. J. ( 2004; ). Dynamic localization of membrane proteins in Bacillus subtilis. Microbiology 150, 2815–2824.[CrossRef]
    [Google Scholar]
  16. Katis, V. L., Harry, E. J. & Wake, R. G. ( 1997; ). The Bacillus subtilis division protein DivIC is a highly abundant membrane-bound protein that localizes to the division site. Mol Microbiol 26, 1047–1055.[CrossRef]
    [Google Scholar]
  17. Kawai, F., Shoda, M., Harashima, R., Sadaie, Y., Hara, H. & Matsumoto, K. ( 2004; ). Cardiolipin domains in Bacillus subtilis Marburg strains. J Bacteriol 186, 1475–1483.[CrossRef]
    [Google Scholar]
  18. Ksenzenko, S. M. & Brusilow, W. S. A. ( 1993; ). Protein–-lipid interactions of the proteolipid c subunit of the Escherichia coli proton-translocating adenosinetriphosphatase. Arch Biochem Biophys 305, 78–83.[CrossRef]
    [Google Scholar]
  19. Lemon, K. P. & Grossman, A. D. ( 1998; ). Localization of bacterial DNA polymerase: evidence for a factory model of replication. Science 282, 1516–1519.[CrossRef]
    [Google Scholar]
  20. Lewis, P. J. & Marston, A. L. ( 1999; ). GFP vectors for controlled expression and dual labelling of protein fusions in Bacillus subtilis. Gene 227, 101–109.[CrossRef]
    [Google Scholar]
  21. Lewis, P. J., Thaker, S. D. & Errington, J. ( 2000; ). Compartmentalization of transcription and translation in Bacillus subtilis. EMBO J 19, 710–718.[CrossRef]
    [Google Scholar]
  22. Matsumoto, K., Kusaka, J., Nishibori, A. & Hara, H. ( 2006; ). Lipid domains in bacterial membranes. Mol Microbiol 61, 1110–1117.[CrossRef]
    [Google Scholar]
  23. Meijer, W. J., Serna-Rico, A. & Salas, M. ( 2001; ). Characterization of the bacteriophage phi29-encoded protein p16.7: a membrane protein involved in phage DNA replication. Mol Microbiol 39, 731–746.[CrossRef]
    [Google Scholar]
  24. Migocki, M. D., Lewis, P. J., Wake, R. G. & Harry, E. J. ( 2004; ). The midcell replication factory in Bacillus subtilis is highly mobile: implications for coordinating chromosome replication with other cell cycle events. Mol Microbiol 54, 452–463.[CrossRef]
    [Google Scholar]
  25. Mileykovskaya, E. & Dowhan, W. ( 2000; ). Visualization of phospholipid domains in Escherichia coli by using the cardiolipin-specific fluorescent dye 10-N-nonyl acridine orange. J Bacteriol 182, 1172–1175.[CrossRef]
    [Google Scholar]
  26. Mileykovskaya, E. & Dowhan, W. ( 2005; ). Role of membrane lipids in bacterial division-site selection. Curr Opin Microbiol 8, 135–142.[CrossRef]
    [Google Scholar]
  27. Nishibori, A., Kusaka, J., Hara, H., Umeda, M. & Matsumoto, K. ( 2005; ). Phosphatidylethanolamine domains and localization of phospholipids synthases in Bacillus subtilis membranes. J Bacteriol 187, 2163–2174.[CrossRef]
    [Google Scholar]
  28. Rothfield, L., Taghalout, A. & Shih, Y.-L. ( 2005; ). Spatial control of bacterial division-site placement. Nat Rev Microbiol 3, 959–968.[CrossRef]
    [Google Scholar]
  29. Sharpe, M. E., Hauser, P. M., Sharpe, R. G. & Errington, J. ( 1998; ). Bacillus subtilis cell cycle as studied by fluorescence microscopy: constancy of cell length at initiation of DNA replication and evidence for active nucleoid partitioning. J Bacteriol 180, 547–555.
    [Google Scholar]
  30. Wu, L. J. & Errington, J. ( 2004; ). Coordination of cell division and chromosome segregation by a nucleoid occlusion protein in Bacillus subtilis. Cell 117, 915–925.[CrossRef]
    [Google Scholar]
  31. Wu, L. J., Lewis, P. J., Allmansberger, R., Hauser, P. M. & Errington, J. ( 1995; ). A conjugation-like mechanism for prespore chromosome partitioning during sporulation in Bacillus subtilis. Genes Dev 9, 1316–1326.[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.2007/013268-0
Loading
/content/journal/micro/10.1099/mic.0.2007/013268-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error