1887

Abstract

Cell division in rod-shaped bacteria nearly always occurs exactly at mid-cell and is dependent on the formation of the cytokinetic FtsZ ring and its associated division proteins. Many thousands of copies of division, or septum-specific proteins assemble at this site and may lead to the exclusion of other integral membrane proteins that are normally able to diffuse freely throughout the cytoplasmic membrane. In this study we have investigated the localization of a series of integral membrane proteins in and we show that the recruitment of division and septum-specific proteins does not necessarily preclude the diffusion of other integral membrane proteins. However, some proteins, namely ATP synthase and succinate dehydrogenase, are reduced/absent from the mid-cell region at the onset of cell division, which may reflect an association with lipid domains rich in phosphatidylglycerol that are thought to be present at diminished levels at sites of cell division.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.2007/013268-0
2008-01-01
2020-04-02
Loading full text...

Full text loading...

/deliver/fulltext/micro/154/1/64.html?itemId=/content/journal/micro/10.1099/mic.0.2007/013268-0&mimeType=html&fmt=ahah

References

  1. Anagnostopoulos C., Spizizen J.. 1961; Requirements for transformation in Bacillus subtilis . J Bacteriol81:741–746
    [Google Scholar]
  2. Beall B., Lutkenhaus J.. 1991; FtsZ in Bacillus subtilis is required for vegetative septation and for asymmetric septation during sporulation. Genes Dev5:447–455
    [Google Scholar]
  3. Binenbaum Z., Klyman E., Fishov I.. 1999; Division-associated changes in membrane viscosity of Escherichia coli . Biochimie81:921–929
    [Google Scholar]
  4. Dalbey R. E., Chen M.. 2004; Sec-translocase mediated membrane protein biogenesis. Biochim Biophys Acta1694:37–53
    [Google Scholar]
  5. Davies K. M., Lewis P. J.. 2003; Localization of rRNA synthesis in Bacillus subtilis : characterization of loci involved in transcription focus formation. J Bacteriol185:2346–2353
    [Google Scholar]
  6. Davies K. M., Dedman A., van Horck S., Lewis P. J.. 2005; The NusA : RNA polymerase ratio is increased at sites of rRNA synthesis in Bacillus subtilis . Mol Microbiol57:366–379
    [Google Scholar]
  7. de Mendoza D., Schujman G. E., Aguilar P. S.. 2002; Biosynthesis and function of membrane lipids. In Bacillus subtilis and its Closest Relatives: from Genes to Cells . pp43–55 Edited by Sonenshine A. L.. Hoch J. A., Losick R. Washington, DC: ASM Press;
  8. Errington J., Daniel R. A., Scheffers D.-J.. 2003; Cytokinesis in bacteria. Microbiol Mol Biol Rev67:52–65
    [Google Scholar]
  9. Feucht A., Lewis P. J.. 2001; Improved plasmid vectors for the production of multiple fluorescent protein fusions in Bacillus subtilis . Gene264:289–297
    [Google Scholar]
  10. Fishov I., Woldringh C. L.. 1999; Visualization of membrane domains in Escherichia coli . Mol Microbiol32:1166–1172
    [Google Scholar]
  11. Gilson P. R., Beech P. L.. 2001; Cell division protein FtsZ: running rings around bacteria, chloroplasts and mitochondria. Res Microbiol152:3–10
    [Google Scholar]
  12. Hamoen L. W., Meile J. C., de Jong W., Noirot P., Errington J.. 2006; SepF, a novel FtsZ-interacting protein required for a late step in cell division. Mol Microbiol59:989–999
    [Google Scholar]
  13. Harry E., Monahan L., Thompson L.. 2006; Bacterial cell division: the mechanism and its precision. Int Rev Cytol253:27–94
    [Google Scholar]
  14. Jenkinson H. F.. 1983; Altered arrangement of proteins in the spore coat of a germination mutant of Bacillus subtilis . J Gen Microbiol129:1945–1958
    [Google Scholar]
  15. Johnson A. S., van Horck S., Lewis P. J.. 2004; Dynamic localization of membrane proteins in Bacillus subtilis . Microbiology150:2815–2824
    [Google Scholar]
  16. Katis V. L., Harry E. J., Wake R. G.. 1997; The Bacillus subtilis division protein DivIC is a highly abundant membrane-bound protein that localizes to the division site. Mol Microbiol26:1047–1055
    [Google Scholar]
  17. Kawai F., Shoda M., Harashima R., Sadaie Y., Hara H., Matsumoto K.. 2004; Cardiolipin domains in Bacillus subtilis Marburg strains. J Bacteriol186:1475–1483
    [Google Scholar]
  18. Ksenzenko S. M., Brusilow W. S. A.. 1993; Protein–-lipid interactions of the proteolipid c subunit of the Escherichia coli proton-translocating adenosinetriphosphatase. Arch Biochem Biophys305:78–83
    [Google Scholar]
  19. Lemon K. P., Grossman A. D.. 1998; Localization of bacterial DNA polymerase: evidence for a factory model of replication. Science282:1516–1519
    [Google Scholar]
  20. Lewis P. J., Marston A. L.. 1999; GFP vectors for controlled expression and dual labelling of protein fusions in Bacillus subtilis . Gene227:101–109
    [Google Scholar]
  21. Lewis P. J., Thaker S. D., Errington J.. 2000; Compartmentalization of transcription and translation in Bacillus subtilis . EMBO J19:710–718
    [Google Scholar]
  22. Matsumoto K., Kusaka J., Nishibori A., Hara H.. 2006; Lipid domains in bacterial membranes. Mol Microbiol61:1110–1117
    [Google Scholar]
  23. Meijer W. J., Serna-Rico A., Salas M.. 2001; Characterization of the bacteriophage phi29-encoded protein p16.7: a membrane protein involved in phage DNA replication. Mol Microbiol39:731–746
    [Google Scholar]
  24. Migocki M. D., Lewis P. J., Wake R. G., Harry E. J.. 2004; The midcell replication factory in Bacillus subtilis is highly mobile: implications for coordinating chromosome replication with other cell cycle events. Mol Microbiol54:452–463
    [Google Scholar]
  25. Mileykovskaya E., Dowhan W.. 2000; Visualization of phospholipid domains in Escherichia coli by using the cardiolipin-specific fluorescent dye 10- N -nonyl acridine orange. J Bacteriol182:1172–1175
    [Google Scholar]
  26. Mileykovskaya E., Dowhan W.. 2005; Role of membrane lipids in bacterial division-site selection. Curr Opin Microbiol8:135–142
    [Google Scholar]
  27. Nishibori A., Kusaka J., Hara H., Umeda M., Matsumoto K.. 2005; Phosphatidylethanolamine domains and localization of phospholipids synthases in Bacillus subtilis membranes. J Bacteriol187:2163–2174
    [Google Scholar]
  28. Rothfield L., Taghalout A., Shih Y.-L.. 2005; Spatial control of bacterial division-site placement. Nat Rev Microbiol3:959–968
    [Google Scholar]
  29. Sharpe M. E., Hauser P. M., Sharpe R. G., Errington J.. 1998; Bacillus subtilis cell cycle as studied by fluorescence microscopy: constancy of cell length at initiation of DNA replication and evidence for active nucleoid partitioning. J Bacteriol180:547–555
    [Google Scholar]
  30. Wu L. J., Errington J.. 2004; Coordination of cell division and chromosome segregation by a nucleoid occlusion protein in Bacillus subtilis . Cell117:915–925
    [Google Scholar]
  31. Wu L. J., Lewis P. J., Allmansberger R., Hauser P. M., Errington J.. 1995; A conjugation-like mechanism for prespore chromosome partitioning during sporulation in Bacillus subtilis . Genes Dev9:1316–1326
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.2007/013268-0
Loading
/content/journal/micro/10.1099/mic.0.2007/013268-0
Loading

Data & Media loading...

Most cited this month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error