1887

Abstract

We have previously identified and functionally characterized the transcription factor ACE1 (Pc-ACE1) from . In , ACE1 activates the copper-dependent transcription of target genes through a DNA sequence element named ACE. However, the possible target gene(s) of Pc-ACE1 were unknown. An search led to the identification of putative ACE elements in the promoter region of , one of the four clustered genes encoding multicopper oxidases (MCOs) in . Since copper exerts an effect at the transcriptional level in MCOs from several organisms, in this work we analysed the effect of copper on transcript levels of the clustered MCO genes from , with the exception of the transcriptionally inactive . Copper supplementation of cultures produced an increment in transcripts from genes and , but not from . Electrophoretic mobility-shift assays revealed that Pc-ACE1 binds specifically to a probe containing one of the putative ACE elements found in the promoter of . In addition, using a cell-free transcription system, we showed that in the presence of cuprous ion, Pc-ACE1 induces activation of the promoter of , but not that of .

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.2007/013128-0
2008-02-01
2019-11-19
Loading full text...

Full text loading...

/deliver/fulltext/micro/154/2/491.html?itemId=/content/journal/micro/10.1099/mic.0.2007/013128-0&mimeType=html&fmt=ahah

References

  1. Baldrian, P. ( 2006; ). Fungal laccases – occurrence and properties. FEMS Microbiol Rev 30, 215–242.[CrossRef]
    [Google Scholar]
  2. Beaudoin, J., Mercier, A., Langlois, R. & Labbé, S. ( 2003; ). The Schizosaccharomyces pombe Cuf1 is composed of functional modules from two distinct classes of copper metalloregulatory transcription factors. J Biol Chem 278, 14565–14577.[CrossRef]
    [Google Scholar]
  3. Breslauer, K. J., Frank, R., Blocker, H. & Marky, L. A. ( 1986; ). Predicting DNA duplex stability from the base sequence. Proc Natl Acad Sci U S A 83, 3746–3750.[CrossRef]
    [Google Scholar]
  4. Brown, J. A., Li, D., Alic, M. & Gold, M. H. ( 1993; ). Heat shock induction of manganese peroxidase gene transcription in Phanerochaete chrysosporium. Appl Environ Microbiol 59, 4295–4299.
    [Google Scholar]
  5. Buchman, C., Scroch, P., Welch, J., Fogel, S. & Karin, M. ( 1989; ). The CUP2 gene product, regulator of yeast metallothionein expression, is a copper-activated DNA-binding protein. Mol Cell Biol 9, 4091–4095.
    [Google Scholar]
  6. Buchman, C., Skroch, P., Dixon, W., Tullius, T. D. & Karin, M. ( 1990; ). A single amino acid change in CUP2 alters its mode of DNA binding. Mol Cell Biol 10, 4778–4787.
    [Google Scholar]
  7. Carri, M. T., Galiazzo, F., Ciriolo, M. R. & Rotilio, G. ( 1991; ). Evidence for co-regulation of Cu,Zn superoxide dismutase and metallothionein gene expression in yeast through transcriptional control by copper via the ACE1 factor. FEBS Lett 278, 263–266.[CrossRef]
    [Google Scholar]
  8. Collins, P. J. & Dobson, A. D. W. ( 1997; ). Regulation of laccase gene transcription. Appl Environ Microbiol 63, 3444–3450.
    [Google Scholar]
  9. Culotta, V. C., Hsu, T., Hu, S., Fürst, P. & Hamer, D. ( 1989; ). Copper and ACE1 regulatory protein reversibly induce yeast metallothionein gene transcription in a mouse extract. Proc Natl Acad Sci U S A 86, 8377–8381.[CrossRef]
    [Google Scholar]
  10. Culotta, V. C., Howard, W. R. & Liu, X. F. ( 1994; ). CRS5 encodes a metallothionein-like protein in Saccharomyces cerevisiae. J Biol Chem 269, 25295–25302.
    [Google Scholar]
  11. Evans, C. F., Engelke, D. R. & Thiele, D. J. ( 1990; ). ACE1 transcription factor produced in E. coli binds multiple regions within yeast metallothionein upstream activation sequences. Mol Cell Biol 10, 426–429.
    [Google Scholar]
  12. Galhaup, C., Goller, S., Peterbauer, C. K., Strauss, J. & Haltrich, D. ( 2002; ). Characterization of the major laccase isoenzyme from Trametes pubescens and regulation of its synthesis by metal ions. Microbiology 148, 2159–2169.
    [Google Scholar]
  13. Gralla, E. B., Thiele, D. J., Silar, P. & Valentine, J. S. ( 1991; ). ACE1, a copper-dependent transcription factor, activates expression of the yeast copper zinc superoxide dismutase gene. Proc Natl Acad Sci U S A 88, 8558–8562.[CrossRef]
    [Google Scholar]
  14. Gross, C., Kelleher, M., Iyer, V. R., Brown, P. O. & Winge, D. R. ( 2000; ). Identification of the copper regulon in Saccharomyces cerevisiae by DNA microarrays. J Biol Chem 275, 32310–32316.[CrossRef]
    [Google Scholar]
  15. Hoegger, P. J., Kilaru, S., James, T. Y., Thacker, J. R. & Kües, U. ( 2006; ). Phylogenetic comparison and classification of laccase and related multicopper oxidase protein sequences. FEBS J 273, 2308–2326.[CrossRef]
    [Google Scholar]
  16. Hu, S., Fürst, P. & Hamer, D. ( 1990; ). The DNA and Cu binding functions of ACE1 are interdigitated within a single domain. New Biol 2, 544–555.
    [Google Scholar]
  17. Karahanian, E., Corsini, G., Lobos, S. & Vicuña, R. ( 1998; ). Structure and expression of a laccase gene from the ligninolytic basidiomycete Ceriporiopsis subvermispora. Biochim Biophys Acta 1443, 65–74.[CrossRef]
    [Google Scholar]
  18. Kersten, P. & Cullen, D. ( 2007; ). Extracellular oxidative systems of the lignin-degrading basidiomycete Phanerochaete chrysosporium. Fungal Genet Biol 44, 77–87.[CrossRef]
    [Google Scholar]
  19. Larrondo, L. F., Salas, L., Melo, F., Vicuña, R. & Cullen, D. ( 2003; ). A novel extracellular multicopper oxidase with ferroxidase activity in Phanerochaete chrysosporium. Appl Environ Microbiol 69, 6257–6263.[CrossRef]
    [Google Scholar]
  20. Larrondo, L. F., González, B., Cullen, D. & Vicuña, R. ( 2004; ). Characterization of a multicopper oxidase gene cluster in Phanerochaete chrysosporium and evidence of altered splicing of the mco transcripts. Microbiology 150, 2775–2783.[CrossRef]
    [Google Scholar]
  21. Larrondo, L. F., Canessa, P., Melo, F., Polanco, R. & Vicuna, R. ( 2007a; ). Cloning and characterization of the genes encoding the high affinity iron uptake protein complex Fet3/Ftr1 in the basidiomycete Phanerochaete chrysosporium. Microbiology 153, 1772–1780.[CrossRef]
    [Google Scholar]
  22. Larrondo, L. F., Canessa, P., Vicuna, R., Stewart, P., Vanden Wymelenberg, A. & Cullen, D. ( 2007b; ). Structure and transcriptional impact of divergent repetitive elements inserted within Phanerochaete chrysosporium strain RP-78 genes. Mol Genet Genomics 277, 43–55.
    [Google Scholar]
  23. Manubens, A., Avila, M., Canessa, P. & Vicuña, R. ( 2003; ). Differential regulation of genes encoding manganese peroxidase (MnP) in the basidiomycete Ceriporiopsis subvermispora. Curr Genet 43, 433–438.[CrossRef]
    [Google Scholar]
  24. Martin, F., Linden, T., Katschinski, D. M., Oehme, F., Flamme, I., Mukhopadhyay, C. K., Eckhardt, K., Tröger, J., Barth, S. & other authors ( 2005; ). Copper-dependent activation of hypoxia-inducible factor (HIF)-1: implications for ceruloplasmin regulation. Blood 105, 4613–4619.[CrossRef]
    [Google Scholar]
  25. Martinez, A. T., Speranza, M., Ruiz-Dueñas, F. J., Ferreira, P., Camarero, S., Guillen, F., Martinez, M. J., Gutierrez, A. & del Rio, J. C. ( 2005; ). Biodegradation of lignocellulosics: microbial, chemical, and enzymatic aspects of the fungal attack of lignin. Int Microbiol 8, 195–204.
    [Google Scholar]
  26. Palmieri, G., Giardina, P., Bianco, C., Fontanella, B. & Sannia, G. ( 2000; ). Copper induction of laccase isozymes in the ligninolytic fungus Pleurotus ostreatus. Appl Environ Microbiol 66, 920–924.[CrossRef]
    [Google Scholar]
  27. Polanco, R., Lobos, S. & Vicuña, R. ( 2002; ). Binding of nuclear proteins to the promoter region of the laccase gene Cs-lcs1 from the basidiomycete Ceriporiopsis subvermispora. Enzyme Microb Technol 30, 525–528.[CrossRef]
    [Google Scholar]
  28. Polanco, R., Canessa, P., Rivas, A., Larrondo, L. F., Lobos, S. & Vicuña, R. ( 2006; ). Cloning and functional characterization of the gene encoding the transcription factor Ace1 in the basidiomycete Phanerochaete chrysosporium. Biol Res 39, 641–648.
    [Google Scholar]
  29. Sanmartin, M., Pateraki, I., Chatzopoulou, F. & Kanellis, A. K. ( 2007; ). Differential expression of the ascorbate oxidase multigene family during fruit development and in response to stress. Planta 225, 873–885.[CrossRef]
    [Google Scholar]
  30. Soden, D. M. & Dobson, A. D. W. ( 2001; ). Differential regulation of laccase gene expression in Pleurotus sajor-caju. Microbiology 147, 1755–1763.
    [Google Scholar]
  31. Soden, D. M. & Dobson, A. D. W. ( 2003; ). The use of amplified flanking region-PCR in the isolation of laccase promoter sequences from the edible fungus Pleurotus sajor-caju. J Appl Microbiol 95, 553–562.[CrossRef]
    [Google Scholar]
  32. Solomon, E. I., Sundaram, U. M. & Machonkin, T. E. ( 1996; ). Multicopper oxidases and oxygenases. Chem Rev 96, 2563–2606.[CrossRef]
    [Google Scholar]
  33. Thiele, D. J. ( 1988; ). ACE1 regulates expression of the Saccharomyces cerevisiae metallothionein gene. Mol Cell Biol 8, 2745–2752.
    [Google Scholar]
  34. Thorvaldsen, J. L., Sewell, A. K., McGowen, C. L. & Winge, D. R. ( 1993; ). Regulation of metallothionein genes by the ACE1 and AMT1 transcription factors. J Biol Chem 268, 12512–12518.
    [Google Scholar]
  35. van Bakel, H., Strengman, E., Wijmenga, C. & Holstege, F. C. P. ( 2005; ). Gene expression profiling and phenotype analyses of S. cerevisiae in response to changing copper reveals six genes with new roles in copper and iron metabolism. Physiol Genomics 22, 356–367.[CrossRef]
    [Google Scholar]
  36. Winge, D. R. ( 1998; ). Copper-regulatory domain involved in gene expression. Prog Nucleic Acid Res Mol Biol 58, 165–195.
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.2007/013128-0
Loading
/content/journal/micro/10.1099/mic.0.2007/013128-0
Loading

Data & Media loading...

Supplements

vol. , part 2, pp. 491 - 499

transcription-translation of ACE1 transcription factors from and . (A) (Top) Ethidium-bromide staining of the synthesized mRNA (680 nt) (1) and mRNA (1960 nt) (2). (Bottom) Autoradiography of the -synthesized Sc-ACE1 (1) and Pc-ACE1 (2) transcription factors (B) Binding assays conducted with the 100 bp DNA probe (ACE ) shown in Fig. 3 of the main paper and the synthesized Sc-ACE1. Lanes contain: (1) free probe (FP); (2) standard binding reaction (St); (3-5) binding assays in the presence of 25-, 50- or 100-fold excess, respectively, of unlabelled specific DNA probe; (6-8) binding assays in the presence of 25-, 50- or 100-fold excess, respectively, of a 101 bp unrelated DNA as a non-specific competitor. [ PDF] (524 kb)



PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error