1887

Abstract

The growth and nutritional requirements of mycobacteria have been intensively studied since the discovery of more than a century ago. However, the identity of many transporters for essential nutrients of and other mycobacteria is still unknown despite a wealth of genomic data and the availability of sophisticated genetic tools. Recently, considerable progress has been made in recognizing that two lipid permeability barriers have to be overcome in order for a nutrient molecule to reach the cytoplasm of mycobacteria. Uptake processes are discussed by comparing with . For example, has only five recognizable carbohydrate transporters in the inner membrane, while has 28 such transporters at its disposal. The specificities of inner-membrane transporters for sulfate, phosphate and some amino acids have been determined. Outer-membrane channel proteins in both organisms are thought to contribute to nutrient uptake. In particular, the Msp porins have been shown to be required for uptake of carbohydrates, amino acids and phosphate by . The set of porins also appears to be different for and . These differences likely reflect the lifestyles of these mycobacteria and the availability of nutrients in their natural habitats: the soil and the human body. The comprehensive identification and the biochemical and structural characterization of the nutrient transporters of will not only promote our understanding of the physiology of this important human pathogen, but might also be exploited to improve tuberculosis chemotherapy.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.2007/012872-0
2008-03-01
2020-09-20
Loading full text...

Full text loading...

/deliver/fulltext/micro/154/3/679.html?itemId=/content/journal/micro/10.1099/mic.0.2007/012872-0&mimeType=html&fmt=ahah

References

  1. Agranoff D., Krishna S.. 2004; Metal ion transport and regulation in Mycobacterium tuberculosis . Front Biosci9:2996–3006
    [Google Scholar]
  2. Barry C. E. III, Lee R. E., Mdluli K., Sampson A. E., Schroeder B. G., Slayden R. A., Yuan Y.. 1998; Mycolic acids: structure, biosynthesis and physiological functions. Prog Lipid Res37:143–179
    [Google Scholar]
  3. Bell A. W., Buckel S. D., Groarke J. M., Hope J. N., Kingsley D. H., Hermodson M. A.. 1986; The nucleotide sequences of the rbsD, rbsA , and rbsC genes of Escherichia coli K12. J Biol Chem261:7652–7658
    [Google Scholar]
  4. Bentley S. D., Chater K. F., Cerdeno-Tarraga A. M., Challis G. L., Thomson N. R., James K. D., Harris D. E., Quail M. A., Kieser H.. other authors 2002; Complete genome sequence of the model actinomycete Streptomyces coelicolor A3(2. Nature417:141–147
    [Google Scholar]
  5. Bertram R., Schlicht M., Mahr K., Nothaft H., Saier M. H. Jr, Titgemeyer F.. 2004; In silico and transcriptional analysis of carbohydrate uptake systems of Streptomyces coelicolor A3(2). J Bacteriol186:1362–1373
    [Google Scholar]
  6. Beveridge T. J.. 1995; The periplasmic space and the periplasm in Gram-positive and Gram-negative bacteria. ASM News61:125–130
    [Google Scholar]
  7. Beveridge T. J.. 1999; Structures of gram-negative cell walls and their derived membrane vesicles. J Bacteriol181:4725–4733
    [Google Scholar]
  8. Beveridge T. J., Kadurugamuwa J. L.. 1996; Periplasm, periplasmic spaces, and their relation to bacterial wall structure: novel secretion of selected periplasmic proteins from Pseudomonas aeruginosa . Microb Drug Resist2:1–8
    [Google Scholar]
  9. Bhatt K., Banerjee S. K., Chakraborti P. K.. 2000; Evidence that phosphate specific transporter is amplified in a fluoroquinolone resistant Mycobacterium smegmatis . Eur J Biochem267:4028–4032
    [Google Scholar]
  10. Borich S. M., Murray A., Gormley E.. 2000; Genomic arrangement of a putative operon involved in maltose transport in the Mycobacterium tuberculosis complex and Mycobacterium leprae . Microbios102:7–15
    [Google Scholar]
  11. Braibant M., Lefevre P., de Wit L., Peirs P., Ooms J., Huygen K., Andersen A. B., Content J.. 1996; A Mycobacterium tuberculosis gene cluster encoding proteins of a phosphate transporter homologous to the Escherichia coli Pst system. Gene176:171–176
    [Google Scholar]
  12. Braibant M., Gilot P., Content J.. 2000; The ATP binding cassette (ABC) transport systems of Mycobacterium tuberculosis . FEMS Microbiol Rev24:449–467
    [Google Scholar]
  13. Braun V., Killmann H.. 1999; Bacterial solutions to the iron-supply problem. Trends Biochem Sci24:104–109
    [Google Scholar]
  14. Brennan P. J., Nikaido H.. 1995; The envelope of mycobacteria. Annu Rev Biochem64:29–63
    [Google Scholar]
  15. Brinkkötter A., Kloss H., Alpert C., Lengeler J. W.. 2000; Pathways for the utilization of N -acetylgalactosamine and galactosamine in Escherichia coli . Mol Microbiol37:125–135
    [Google Scholar]
  16. Chakrabarti A. C., Deamer D. W.. 1992; Permeability of lipid bilayers to amino acids and phosphate. Biochim Biophys Acta 1111;171–177
    [Google Scholar]
  17. Chan E. D., Chan J., Schluger N. W.. 2001; What is the role of nitric oxide in murine and human host defense against tuberculosis? Current knowledge. Am J Respir Cell Mol Biol25:606–612
    [Google Scholar]
  18. Clegg S., Yu F., Griffiths L., Cole J. A.. 2002; The roles of the polytopic membrane proteins NarK, NarU and NirC in Escherichia coli K-12: two nitrate and three nitrite transporters. Mol Microbiol44:143–155
    [Google Scholar]
  19. Cole S. T., Brosch R., Parkhill J., Garnier T., Churcher C., Harris D., Gordon S. V., Eiglmeier K., Gas S.. other authors 1998; Deciphering the biology of Mycobacterium tuberculosis from the complete genome sequence. Nature393:537–544
    [Google Scholar]
  20. Content J., Braibant M., Connell N., Ainsa J. A.. 2005; Transport processes. In Tuberculosis and the Tubercle Bacillus pp379–401 Edited by Cole S., Eisenach K. D., McMurray D. N., Jacobs W. R.. Washington, DC: ASM Press;
    [Google Scholar]
  21. Cox R. A., Cook G. M.. 2007; Growth regulation in the mycobacterial cell. Curr Mol Med7:231–245
    [Google Scholar]
  22. Daffé M., Draper P.. 1998; The envelope layers of mycobacteria with reference to their pathogenicity. Adv Microb Physiol39:131–203
    [Google Scholar]
  23. Daley D. O., Rapp M., Granseth E., Melen K., Drew D., von Heijne G.. 2005; Global topology analysis of the Escherichia coli inner membrane proteome. Science308:1321–1323
    [Google Scholar]
  24. Dirusso C. C., Black P. N.. 2004; Bacterial long chain fatty acid transport: gateway to a fatty acid-responsive signaling system. J Biol Chem279:49563–49566
    [Google Scholar]
  25. Draper P.. 1998; The outer parts of the mycobacterial envelope as permeability barriers. Front Biosci3:D1253–D1261
    [Google Scholar]
  26. Dubnau E., Chan J., Mohan V. P., Smith I.. 2005; Responses of Mycobacterium tuberculosis to growth in the mouse lung. Infect Immun73:3754–3757
    [Google Scholar]
  27. Dumas F., Koebnik R., Winterhalter M., van Gelder P.. 2000; Sugar transport through maltoporin of Escherichia coli . Role of polar tracks. J Biol Chem275:19747–19751
    [Google Scholar]
  28. Edson N. L.. 1951; The intermediary metabolism of the mycobacteria. Bacteriol Rev15:147–182
    [Google Scholar]
  29. Eriksson S., Lucchini S., Thompson A., Rhen M., Hinton J. C.. 2003; Unravelling the biology of macrophage infection by gene expression profiling of intracellular Salmonella enterica . Mol Microbiol47:103–118
    [Google Scholar]
  30. Etienne G., Laval F., Villeneuve C., Dinadayala P., Abouwarda A., Zerbib D., Galamba A., Daffe M.. 2005; The cell envelope structure and properties of Mycobacterium smegmatis mc2155: is there a clue for the unique transformability of the strain?. Microbiology151:2075–2086
    [Google Scholar]
  31. Eze M. O., McElhaney R. N.. 1981; The effect of alterations in the fluidity and phase state of the membrane lipids on the passive permeation and facilitated diffusion of glycerol in Escherichia coli . J Gen Microbiol124:299–307
    [Google Scholar]
  32. Faller M., Niederweis M., Schulz G. E.. 2004; The structure of a mycobacterial outer-membrane channel. Science303:1189–1192
    [Google Scholar]
  33. Franke W., Schillinger A.. 1944; Zum Stoffwechsel der saeurefesten Bakterien. I. Orientierende aerobe Reihenversuche. Biochem Z319:313–334 in German
    [Google Scholar]
  34. Gebhard S., Tran S. L., Cook G. M.. 2006; The Phn system of Mycobacterium smegmatis : a second high-affinity ABC-transporter for phosphate. Microbiology152:3453–3465
    [Google Scholar]
  35. Graham L. L., Beveridge T. J., Nanninga N.. 1991; Periplasmic space and the concept of the periplasm. Trends Biochem Sci16:328–329
    [Google Scholar]
  36. Gutknecht R., Beutler R., Garcia-Alles L. F., Baumann U., Erni B.. 2001; The dihydroxyacetone kinase of Escherichia coli utilizes a phosphoprotein instead of ATP as phosphoryl donor. EMBO J20:2480–2486
    [Google Scholar]
  37. Hancock R. E., Farmer S. W., Li Z. S., Poole K.. 1991; Interaction of aminoglycosides with the outer membranes and purified lipopolysaccharide and OmpF porin of Escherichia coli . Antimicrob Agents Chemother35:1309–1314
    [Google Scholar]
  38. Hoffmann C., Leis L., Niederweis M., Plitzko J. M., Engelhardt H.. 2008; Disclosure of the mycobacterial outer membrane: cryo-electron tomography and vitreous sections reveal the lipid bilayer structure. Proc Natl Acad Sci U S A in press
    [Google Scholar]
  39. Izumori K., Yamanaka K., Elbein D.. 1976; Pentose metabolism in Mycobacterium smegmatis : specificity of induction of pentose isomerases. J Bacteriol128:587–591
    [Google Scholar]
  40. Jackson M., Stadthagen G., Gicquel B.. 2007; Long-chain multiple methyl-branched fatty acid-containing lipids of Mycobacterium tuberculosis : biosynthesis, transport, regulation and biological activities. Tuberculosis87:78–86
    [Google Scholar]
  41. Jarlier V., Nikaido H.. 1990; Permeability barrier to hydrophilic solutes in Mycobacterium chelonei . J Bacteriol172:1418–1423
    [Google Scholar]
  42. Jia W., Cole J. A.. 2005; Nitrate and nitrite transport in Escherichia coli . Biochem Soc Trans33:159–161
    [Google Scholar]
  43. Kana B. D., Mizrahi V.. 2004; Molecular genetics of Mycobacterium tuberculosis in relation to the discovery of novel drugs and vaccines. Tuberculosis84:63–75
    [Google Scholar]
  44. Kartmann B., Stenger S., Niederweis M.. 1999; Porins in the cell wall of Mycobacterium tuberculosis . J Bacteriol181:6543–6546 Authors' correction in J Bacteriol 181, 7650
    [Google Scholar]
  45. Koch R.. 1882; Die Aetiologie der Tuberculose. Berliner Klinische Wochenzeitschrift19:18 in German
    [Google Scholar]
  46. Koebnik R., Locher K. P., van Gelder P.. 2000; Structure and function of bacterial outer membrane proteins: barrels in a nutshell. Mol Microbiol37:239–253
    [Google Scholar]
  47. Lichtinger T., Heym B., Maier E., Eichner H., Cole S. T., Benz R.. 1999; Evidence for a small anion-selective channel in the cell wall of Mycobacterium bovis BCG besides a wide cation-selective pore. FEBS Lett454:349–355
    [Google Scholar]
  48. Liu J., Rosenberg E. Y., Nikaido H.. 1995; Fluidity of the lipid domain of cell wall from Mycobacterium chelonae . Proc Natl Acad Sci U S A92:11254–11258
    [Google Scholar]
  49. Liu J., Barry C. E. III, Besra G. S., Nikaido H.. 1996; Mycolic acid structure determines the fluidity of the mycobacterial cell wall. J Biol Chem271:29545–29551
    [Google Scholar]
  50. Machowski E. E., Dawes S., Mizrahi V.. 2005; TB tools to tell the tale – molecular genetic methods for mycobacterial research. Int J Biochem Cell Biol37:54–68
    [Google Scholar]
  51. Mahfoud M., Sukumaran S., Hülsmann P., Grieger K., Niederweis M.. 2006; Topology of the porin MspA in the outer membrane of Mycobacterium smegmatis . J Biol Chem281:5908–5915
    [Google Scholar]
  52. Maier C., Bremer E., Schmid A., Benz R.. 1988; Pore-forming activity of the Tsx protein from the outer membrane of Escherichia coli . Demonstration of a nucleoside-specific binding site. J Biol Chem263:2493–2499
    [Google Scholar]
  53. Matias V. R., Beveridge T. J.. 2005; Cryo-electron microscopy reveals native polymeric cell wall structure in Bacillus subtilis 168 and the existence of a periplasmic space. Mol Microbiol56:240–251
    [Google Scholar]
  54. Matias V. R., Beveridge T. J.. 2006; Native cell wall organization shown by cryo-electron microscopy confirms the existence of a periplasmic space in Staphylococcus aureus . J Bacteriol188:1011–1021
    [Google Scholar]
  55. Matias V. R., Al-Amoudi A., Dubochet J., Beveridge T. J.. 2003; Cryo-transmission electron microscopy of frozen-hydrated sections of Escherichia coli and Pseudomonas aeruginosa . J Bacteriol185:6112–6118
    [Google Scholar]
  56. McAdam R. A., Weisbrod T. R., Martin J., Scuderi J. D., Brown A. M., Cirillo J. D., Bloom B. R., Jacobs W. R. Jr. 1995; In vivo growth characteristics of leucine and methionine auxotrophic mutants of Mycobacterium bovis BCG generated by transposon mutagenesis. Infect Immun63:1004–1012
    [Google Scholar]
  57. McKinney J. D., Honer zu Bentrup K., Munoz-Elias E. J., Miczak A., Chen B., Chan W. T., Swenson D., Sacchettini J. C., Jacobs W. R. Jr, Russell D. G.. 2000; Persistence of Mycobacterium tuberculosis in macrophages and mice requires the glyoxylate shunt enzyme isocitrate lyase. Nature406:735–738
    [Google Scholar]
  58. Mills C. D.. 2001; Macrophage arginine metabolism to ornithine/urea or nitric oxide/citrulline: a life or death issue. Crit Rev Immunol21:399–425
    [Google Scholar]
  59. Mineda T., Ohara N., Yukitake H., Yamada T.. 1998; The ribosomes contents of mycobacteria. New Microbiol21:1–7
    [Google Scholar]
  60. Minnikin D. E.. 1982; Lipids: complex lipids, their chemistry, biosynthesis and roles. In The Biology of the Mycobacteria: Physiology, Identification and Classification pp95–184 Edited by Ratledge C., Stanford J.. London: Academic Press;
    [Google Scholar]
  61. Moir J. W., Wood N. J.. 2001; Nitrate and nitrite transport in bacteria. Cell Mol Life Sci58:215–224
    [Google Scholar]
  62. Molle V., Saint N., Campagna S., Kremer L., Lea E., Draper P., Molle G.. 2006; pH-dependent pore-forming activity of OmpATb from Mycobacterium tuberculosis and characterization of the channel by peptidic dissection. Mol Microbiol61:826–837
    [Google Scholar]
  63. Munoz-Elias E. J., McKinney J. D.. 2005; Mycobacterium tuberculosis isocitrate lyases 1 and 2 are jointly required for in vivo growth and virulence. Nat Med11:638–644
    [Google Scholar]
  64. Murphy H. N., Stewart G. R., Mischenko V. V., Apt A. S., Harris R., McAlister M. S., Driscoll P. C., Young D. B., Robertson B. D.. 2005; The OtsAB pathway is essential for trehalose biosynthesis in Mycobacterium tuberculosis . J Biol Chem280:14524–14529
    [Google Scholar]
  65. Nathan C., Shiloh M. U.. 2000; Reactive oxygen and nitrogen intermediates in the relationship between mammalian hosts and microbial pathogens. Proc Natl Acad Sci U S A97:8841–8848
    [Google Scholar]
  66. Neyrolles O., Hernandez-Pando R., Pietri-Rouxel F., Pietri-Rouxel F., Fornès P., Tailleux L., Barrios Payán J. A., Pivert E., Bordat Y., Aguilar D.. other authors (2006; Is adipose tissue a place for Mycobacterium tuberculosis persistence?. PLoS ONE1:e43
    [Google Scholar]
  67. Niederweis M.. 2003; Mycobacterial porins – new channel proteins in unique outer membranes. Mol Microbiol49:1167–1177
    [Google Scholar]
  68. Niederweis M., Ehrt S., Heinz C., Klöcker U., Karosi S., Swiderek K. M., Riley L. W., Benz R.. 1999; Cloning of the mspA gene encoding a porin from Mycobacterium smegmatis . Mol Microbiol33:933–945
    [Google Scholar]
  69. Nikaido H.. 1994; Porins and specific diffusion channels in bacterial outer membranes. J Biol Chem269:3905–3908
    [Google Scholar]
  70. Nikaido H.. 2003; Molecular basis of bacterial outer membrane permeability revisited. Microbiol Mol Biol Rev67:593–656
    [Google Scholar]
  71. Nikaido H., Rosenberg E. Y., Foulds J.. 1983; Porin channels in Escherichia coli : studies with beta-lactams in intact cells. J Bacteriol153:232–240
    [Google Scholar]
  72. Nikaido H., Kim S. H., Rosenberg E. Y.. 1993; Physical organization of lipids in the cell wall of Mycobacterium chelonae . Mol Microbiol8:1025–1030
    [Google Scholar]
  73. Nolden L., Ngouoto-Nkili C. E., Bendt A. K., Kramer R., Burkovski A.. 2001; Sensing nitrogen limitation in Corynebacterium glutamicum : the role of glnK and glnD . Mol Microbiol42:1281–1295
    [Google Scholar]
  74. Nothaft H., Dresel D., Willimek A., Mahr K., Niederweis M., Titgemeyer F.. 2003; The phosphotransferase system of Streptomyces coelicolor is biased for N -acetylglucosamine metabolism. J Bacteriol185:7019–7023
    [Google Scholar]
  75. Ohno H., Zhu G., Mohan V. P., Chu D., Kohno S., Jacobs W. R. Jr, Chan J.. 2003; The effects of reactive nitrogen intermediates on gene expression in Mycobacterium tuberculosis . Cell Microbiol5:637–648
    [Google Scholar]
  76. Paul T. R., Beveridge T. J.. 1992; Reevaluation of envelope profiles and cytoplasmic ultrastructure of mycobacteria processed by conventional embedding and freeze-substitution protocols. J Bacteriol174:6508–6517
    [Google Scholar]
  77. Paul T. R., Beveridge T. J.. 1994; Preservation of surface lipids and determination of ultrastructure of Mycobacterium kansasii by freeze-substitution. Infect Immun62:1542–1550
    [Google Scholar]
  78. Paula S., Volkov A. G., Van Hoek A. N., Haines T. H., Deamer D. W.. 1996; Permeation of protons, potassium ions, and small polar molecules through phospholipid bilayers as a function of membrane thickness. Biophys J70:339–348
    [Google Scholar]
  79. Peirs P., Lefevre P., Boarbi S., Wang X. M., Denis O., Braibant M., Pethe K., Locht C., Huygen K., Content J.. 2005; Mycobacterium tuberculosis with disruption in genes encoding the phosphate binding proteins PstS1 and PstS2 is deficient in phosphate uptake and demonstrates reduced in vivo virulence. Infect Immun73:1898–1902
    [Google Scholar]
  80. Ramakrishnan T., Murthy P. S., Gopinathan K. P.. 1972; Intermediary metabolism of mycobacteria. Bacteriol Rev36:65–108
    [Google Scholar]
  81. Ratledge C.. 1982; Nutrition, growth and metabolism. In The Biology of the Mycobacteria pp186–212 Edited by Ratledge C., Stanford J. London: Academic Press;
    [Google Scholar]
  82. Ratledge C., Dover L. G.. 2000; Iron metabolism in pathogenic bacteria. Annu Rev Microbiol54:881–941
    [Google Scholar]
  83. Raynaud C., Guilhot C., Rauzier J., Bordat Y., Pelicic V., Manganelli R., Smith I., Gicquel B., Jackson M.. 2002a; Phospholipases C are involved in the virulence of Mycobacterium tuberculosis . Mol Microbiol45:203–217
    [Google Scholar]
  84. Raynaud C., Papavinasasundaram K. G., Speight R. A., Springer B., Sander P., Böttger E. C., Colston M. J., Draper P.. 2002b; The functions of OmpATb, a pore-forming protein of Mycobacterium tuberculosis . Mol Microbiol46:191–201
    [Google Scholar]
  85. Rengarajan J., Bloom B. R., Rubin E. J.. 2005; Genome-wide requirements for Mycobacterium tuberculosis adaptation and survival in macrophages. Proc Natl Acad Sci U S A102:8327–8332
    [Google Scholar]
  86. Rimmele M., Boos W.. 1994; Trehalose-6-phosphate hydrolase of Escherichia coli . J Bacteriol176:5654–5664
    [Google Scholar]
  87. Rodriguez G. M.. 2006; Control of iron metabolism in Mycobacterium tuberculosis . Trends Microbiol14:320–327
    [Google Scholar]
  88. Rodriguez G. M., Smith I.. 2006; Identification of an ABC transporter required for iron acquisition and virulence in Mycobacterium tuberculosis . J Bacteriol188:424–430
    [Google Scholar]
  89. Rowe J. J., Ubbink-Kok T., Molenaar D., Konings W. N., Driessen A. J.. 1994; NarK is a nitrite-extrusion system involved in anaerobic nitrate respiration by Escherichia coli . Mol Microbiol12:579–586
    [Google Scholar]
  90. Russell D. G.. 2003; Phagosomes, fatty acids and tuberculosis. Nat Cell Biol5:776–778
    [Google Scholar]
  91. Sa-Nogueira I., Nogueira T. V., Soares S., de Lencastre H.. 1997; The Bacillus subtilis l-arabinose ( ara ) operon: nucleotide sequence, genetic organization and expression. Microbiology143:957–969
    [Google Scholar]
  92. Sassetti C. M., Rubin E. J.. 2003; Genetic requirements for mycobacterial survival during infection. Proc Natl Acad Sci U S A100:12989–12994
    [Google Scholar]
  93. Schnappinger D., Ehrt S., Voskuil M. I., Liu Y., Mangan J. A., Monahan I. M., Dolganov G., Efron B., Butcher P. D.. other authors 2003; Transcriptional adaptation of Mycobacterium tuberculosis within macrophages: insights into the phagosomal environment. J Exp Med198:693–704
    [Google Scholar]
  94. Schönert S., Buder T., Dahl M. K.. 1999; Properties of maltose-inducible alpha-glucosidase MalL (sucrase-isomaltase-maltase) in Bacillus subtilis : evidence for its contribution to maltodextrin utilization. Res Microbiol150:167–177
    [Google Scholar]
  95. Senaratne R. H., Mobasheri H., Papavinasasundaram K. G., Jenner P., Lea E. J., Draper P.. 1998; Expression of a gene for a porin-like protein of the OmpA family from Mycobacterium tuberculosis H37Rv. J Bacteriol180:3541–3547
    [Google Scholar]
  96. Seth A., Connell N. D.. 2000; Amino acid transport and metabolism in mycobacteria: cloning, interruption, and characterization of an l-Arginine/gamma-aminobutyric acid permease in Mycobacterium bovis BCG. J Bacteriol182:919–927
    [Google Scholar]
  97. Sohaskey C. D.. 2005; Regulation of nitrate reductase activity in Mycobacterium tuberculosis by oxygen and nitric oxide. Microbiology151:3803–3810
    [Google Scholar]
  98. Sohaskey C. D., Wayne L. G.. 2003; Role of narK2X and narGHJI in hypoxic upregulation of nitrate reduction by Mycobacterium tuberculosis . J Bacteriol185:7247–7256
    [Google Scholar]
  99. Sørensen K. I., Hove-Jensen B.. 1996; Ribose catabolism of Escherichia coli : characterization of the rpiB gene encoding ribose phosphate isomerase B and of the rpiR gene, which is involved in regulation of rpiB expression. J Bacteriol178:1003–1011
    [Google Scholar]
  100. Stahl C., Kubetzko S., Kaps I., Seeber S., Engelhardt H., Niederweis M.. 2001; MspA provides the main hydrophilic pathway through the cell wall of Mycobacterium smegmatis . Mol Microbiol40:451–464 Authors' correction in Mol Microbiol 457, 1509
    [Google Scholar]
  101. Stephan J., Bender J., Wolschendorf F., Hoffmann C., Roth E., Mailänder C., Engelhardt H., Niederweis M.. 2005; The growth rate of Mycobacterium smegmatis depends on sufficient porin-mediated influx of nutrients. Mol Microbiol58:714–730
    [Google Scholar]
  102. Sumiya M., Davis E. O., Packman L. C., McDonald T. P., Henderson P. J.. 1995; Molecular genetics of a receptor protein for d-xylose, encoded by the gene xylF , in Escherichia coli . Receptors Channels3:117–128
    [Google Scholar]
  103. Talaue M. T., Venketaraman V., Hazbon M. H., Peteroy-Kelly M., Seth A., Colangeli R., Alland D., Connell N. D.. 2006; Arginine homeostasis in J774.1 macrophages in the context of Mycobacterium bovis BCG infection. J Bacteriol188:4830–4840
    [Google Scholar]
  104. Timm J., Post F. A., Bekker L. G., Walther G. B., Wainwright H. C., Manganelli R., Chan W. T., Tsenova L., Gold B.. other authors 2003; Differential expression of iron-, carbon-, and oxygen-responsive mycobacterial genes in the lungs of chronically infected mice and tuberculosis patients. Proc Natl Acad Sci U S A100:14321–14326
    [Google Scholar]
  105. Titgemeyer F., Amon J., Parche S., Mahfoud M., Bail J., Schlicht M., Rehm N., Hillmann D., Stephan J.. other authors 2007; A genomic view of sugar transport in Mycobacterium smegmatis and Mycobacterium tuberculosis . J Bacteriol189:5903–5915
    [Google Scholar]
  106. Trivedi O. A., Arora P., Sridharan V., Tickoo R., Mohanty D., Gokhale R. S.. 2004; Enzymic activation and transfer of fatty acids as acyl-adenylates in mycobacteria. Nature428:441–445
    [Google Scholar]
  107. Ulrichs T., Kaufmann S. H.. 2006; New insights into the function of granulomas in human tuberculosis. J Pathol208:261–269
    [Google Scholar]
  108. van Veen H. W.. 1997; Phosphate transport in prokaryotes: molecules, mediators and mechanisms. Antonie Van Leeuwenhoek72:299–315
    [Google Scholar]
  109. van Wezel G. P., Mahr K., Konig M., Traag B. A., Pimentel-Schmitt E. F., Willimek A., Titgemeyer F.. 2005; GlcP constitutes the major glucose uptake system of Streptomyces coelicolor A3(2). Mol Microbiol55:624–636
    [Google Scholar]
  110. Voskuil M. I., Schnappinger D., Visconti K. C., Harrell M. I., Dolganov G. M., Sherman D. R., Schoolnik G. K.. 2003; Inhibition of respiration by nitric oxide induces a Mycobacterium tuberculosis dormancy program. J Exp Med198:705–713
    [Google Scholar]
  111. Vyas N. K., Vyas M. N., Quiocho F. A.. 2003; Crystal structure of M. tuberculosis ABC phosphate transport receptor: specificity and charge compensation dominated by ion-dipole interactions. Structure11:765–774
    [Google Scholar]
  112. Webb M. R.. 2003; Mycobacterial ABC transport system: structure of the primary phosphate receptor. Structure11:736–738
    [Google Scholar]
  113. Wheeler P. R., Bulmer K., Ratledge C.. 1990; Enzymes for biosynthesis de novo and elongation of fatty acids in mycobacteria grown in host cells: is Mycobacterium leprae competent in fatty acid biosynthesis?. J Gen Microbiol136:211–217
    [Google Scholar]
  114. Wolschendorf F., Mahfoud M., Niederweis M.. 2007; Porins are required for uptake of phosphates by Mycobacterium smegmatis . J Bacteriol189:2435–2442
    [Google Scholar]
  115. Wood K. V.. 1995; Marker proteins for gene expression. Curr Opin Biotechnol6:50–58
    [Google Scholar]
  116. Woodruff P. J., Carlson B. L., Siridechadilok B., Pratt M. R., Senaratne R. H., Mougous J. D., Riley L. W., Williams S. J., Bertozzi C. R.. 2004; Trehalose is required for growth of Mycobacterium smegmatis . J Biol Chem279:28835–28843
    [Google Scholar]
  117. Woodson K., Devine K. M.. 1994; Analysis of a ribose transport operon from Bacillus subtilis . Microbiology140:1829–1838
    [Google Scholar]
  118. Wooff E., Michell S. L., Gordon S. V., Chambers M. A., Bardarov S., Jacobs W. R. Jr, Hewinson R. G., Wheeler P. R.. 2002; Functional genomics reveals the sole sulphate transporter of the Mycobacterium tuberculosis complex and its relevance to the acquisition of sulphur in vivo . Mol Microbiol43:653–663
    [Google Scholar]
  119. Yabu K.. 1967; The uptake of d-glutamic acid by Mycobacterium avium . Biochim Biophys Acta135:181–183
    [Google Scholar]
  120. Yabu K.. 1970; Amino acid transport in Mycobacterium smegmatis . J Bacteriol102:6–13
    [Google Scholar]
  121. Yabu K.. 1971; Aspartic acid transport in Mycobacterium smegmatis . Jpn J Microbiol15:449–456
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.2007/012872-0
Loading
/content/journal/micro/10.1099/mic.0.2007/012872-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error