1887

Abstract

’ uses an alcohol-inducible alkane monooxygenase (BMO) to grow on C–C -alkanes. Five ORFs were identified flanking the BMO structural genes. Two of the ORFs, , encoding a putative -transcriptional regulator BmoR, and , encoding a putative GroEL chaperonin BmoG, were analysed by gene-inactivation experiments. The BmoR-deficient mutant grew at slower growth rates than the wild-type on C–C -alkanes and showed little to no growth on C–C -alkanes within 7 days. A BmoR-deficient mutant was constructed in the ‘ : :  reporter strain and used to test whether was involved in induction after growth on C–C carbon sources. In acetate- or lactate-grown cells, C–C -alcohols failed to induce -galactosidase activity. In contrast, in propionate-, butyrate- or pentanoate-grown cells, -butanol induced ∼45 % of the -galactosidase activity observed in the control  : :  strain. In propionate-grown cells, C–C -alcohols induced -galactosidase activity, whereas C and C -alcohols did not. BmoR may act as a -transcriptional regulator of that is controlled by the -alcohol produced in the alkane oxidation. During growth on short-chain-length fatty acids, however, another BMO regulatory system seems to be activated to promote transcription of by short-chain-length alcohols (i.e. ≤C). The -deficient mutant did not grow on C–C -alkanes; however, it was capable of transcribing and of the BMO operon. BmoG may act as a chaperonin to assemble competent BMO.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.2007/012724-0
2008-01-01
2019-10-19
Loading full text...

Full text loading...

/deliver/fulltext/micro/154/1/139.html?itemId=/content/journal/micro/10.1099/mic.0.2007/012724-0&mimeType=html&fmt=ahah

References

  1. Abril, M. A., Michan, C., Timmis, K. N. & Ramos, J. L. ( 1989; ). Regulator and enzyme specificities of the TOL plasmid-encoded upper pathway for degradation of aromatic hydrocarbons and expansion of the substrate range of the pathway. J Bacteriol 171, 6782–6790.
    [Google Scholar]
  2. Ali, H., Scanlan, J., Dumont, M. G. & Murrell, J. C. ( 2006; ). Duplication of the mmoX gene in Methylosinus sporium: cloning, sequencing and mutational analysis. Microbiology 152, 2931–2942.[CrossRef]
    [Google Scholar]
  3. Anzai, Y., Kim, H., Park, J. Y., Wakabayashi, H. & Oyaizu, H. ( 2000; ). Phylogenetic affiliation of the pseudomonads based on 16S rRNA sequence. Int J Syst Evol Microbiol 50, 1563–1589.[CrossRef]
    [Google Scholar]
  4. Beauvais, L. G. & Lippard, S. J. ( 2005; ). Reactions of the peroxo intermediate of soluble methane monooxygenase hydroxylase with ethers. J Am Chem Soc 127, 7370–7378.[CrossRef]
    [Google Scholar]
  5. Blevins, W. T. & Perry, J. J. ( 1972; ). Metabolism of propane, n-propylamine, and propionate by hydrocarbon-utilizing bacteria. J Bacteriol 112, 513–518.
    [Google Scholar]
  6. Brazeau, B. J., Austin, R. N., Tarr, C., Groves, J. T. & Lipscomb, J. D. ( 2001; ). Intermediate Q from soluble methane monooxygenase hydroxylates the mechanistic substrate probe norcarane: evidence for a stepwise reaction. J Am Chem Soc 123, 11831–11837.[CrossRef]
    [Google Scholar]
  7. Campbell, J. W., Morgan-Kiss, R. M. & Cronan, J. E., Jr ( 2003; ). A new Escherichia coli metabolic competency: growth on fatty acids by a novel anaerobic beta-oxidation pathway. Mol Microbiol 47, 793–805.[CrossRef]
    [Google Scholar]
  8. Csaki, R., Bodrossy, L., Klem, J., Murrell, J. C. & Kovacs, K. L. ( 2003; ). Genes involved in the copper-dependent regulation of soluble methane monooxygenase of Methylococcus capsulatus (Bath): cloning, sequencing and mutational analysis. Microbiology 149, 1785–1795.[CrossRef]
    [Google Scholar]
  9. De Carlo, S., Chen, B., Hoover, T. R., Kondrashkina, E., Nogales, E. & Nixon, B. T. ( 2006; ). The structural basis for regulated assembly and function of the transcriptional activator NtrC. Genes Dev 20, 1485–1495.[CrossRef]
    [Google Scholar]
  10. Doughty, D. M., Sayavedra-Soto, L. A., Arp, D. J. & Bottomley, P. J. ( 2005; ). Effects of dichloroethene isomers on the induction and activity of butane monooxygenase in the alkane-oxidizing bacterium “Pseudomonas butanovora”. Appl Environ Microbiol 71, 6054–6059.[CrossRef]
    [Google Scholar]
  11. Doughty, D. M., Sayavedra-Soto, L. A., Arp, D. J. & Bottomley, P. J. ( 2006; ). Product repression of alkane monooxygenase expression in Pseudomonas butanovora. J Bacteriol 188, 2586–2592.[CrossRef]
    [Google Scholar]
  12. Doughty, D. M., Halsey, K. H., Sayavedra-Soto, L. A., Arp, D. J. & Bottomley, P. J. ( 2007; ). Alkane monooxygenase inactivation by propionate in Pseudomonas butanovora; physiological and biochemical implications. Microbiology 153, 3722–3729.[CrossRef]
    [Google Scholar]
  13. Gornall, A. G., Bardawill, C. J. & David, M. M. ( 1949; ). Determination of serum proteins by means of the Biuret reaction. J Biol Chem 177, 751–766.
    [Google Scholar]
  14. Halsey, K. H., Sayavedra-Soto, L. A., Bottomley, P. J. & Arp, D. J. ( 2006; ). Site-directed amino acid substitutions in the hydroxylase alpha subunit of butane monooxygenase from Pseudomonas butanovora: implications for substrates knocking at the gate. J Bacteriol 188, 4962–4969.[CrossRef]
    [Google Scholar]
  15. Hamamura, N., Page, C., Long, T., Semprini, L. & Arp, D. J. ( 1997; ). Chloroform cometabolism by butane-grown CF8, Pseudomonas butanovora, and Mycobacterium vaccae JOB5 and methane-grown Methylosinus trichosporium OB3b. Appl Environ Microbiol 63, 3607–3613.
    [Google Scholar]
  16. Hamamura, N., Yeager, C. & Arp, D. J. ( 2001; ). Two distinct monooxygenases for alkane oxidation in Nocarioides sp. strain CF8. Appl Environ Microbiol 67, 4992–4998.[CrossRef]
    [Google Scholar]
  17. Hanahan, D. ( 1983; ). Studies on transformation of Escherichia coli with plasmids. J Mol Biol 166, 557–580.[CrossRef]
    [Google Scholar]
  18. Kruger, N. & Steinbuchel, A. ( 1992; ). Identification of acoR, a regulatory gene for the expression of genes essential for acetoin catabolism in Alcaligenes eutrophus H16. J Bacteriol 174, 4391–4400.
    [Google Scholar]
  19. Lund, P. A. ( 2001; ). Microbial molecular chaperones. Adv Microb Physiol 44, 93–140.
    [Google Scholar]
  20. Marín, M. M., Smits, T. H., van Beilen, J. B. & Rojo, F. ( 2001; ). The alkane hydroxylase gene of Burkholderia cepacia RR10 is under catabolite repression control. J Bacteriol 183, 4202–4209.[CrossRef]
    [Google Scholar]
  21. Marín, M. M., Yuste, L. & Rojo, F. ( 2003; ). Differential expression of the components of the two alkane hydroxylases from Pseudomonas aeruginosa. J Bacteriol 185, 3232–3237.[CrossRef]
    [Google Scholar]
  22. Morgan-Kiss, R. M. & Cronan, J. E. ( 2004; ). The Escherichia coli fadK (ydiD) gene encodes an anerobically regulated short chain acyl-CoA synthetase. J Biol Chem 279, 37324–37333.[CrossRef]
    [Google Scholar]
  23. Morsczeck, C., Berger, S. & Plum, G. ( 2001; ). The macrophage-induced gene (mig) of Mycobacterium avium encodes a medium-chain acyl-coenzyme A synthetase. Biochim Biophys Acta 1521, 59–65.[CrossRef]
    [Google Scholar]
  24. Olivera, E. R., Carnicero, D., Garcia, B., Minambres, B., Moreno, M. A., Canedo, L., Dirusso, C. C., Naharro, G. & Luengo, J. M. ( 2001; ). Two different pathways are involved in the beta-oxidation of n-alkanoic and n-phenylalkanoic acids in Pseudomonas putida U: genetic studies and biotechnological applications. Mol Microbiol 39, 863–874.[CrossRef]
    [Google Scholar]
  25. Rappas, M., Bose, D. & Zhang, X. ( 2007; ). Bacterial enhancer-binding proteins: unlocking σ 54-dependent gene transcription. Curr Opin Struct Biol 17, 110–116.[CrossRef]
    [Google Scholar]
  26. Sambrook, J., Fritsch, E. F. & Maniatis, T. ( 1989; ). Molecular Cloning: a Laboratory Manual, 2nd edn. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory.
  27. Sayavedra-Soto, L. A., Doughty, D. M., Kurth, E. G., Bottomley, P. J. & Arp, D. J. ( 2005; ). Product and product-independent induction of butane oxidation in Pseudomonas butanovora. FEMS Microbiol Lett 250, 111–116.[CrossRef]
    [Google Scholar]
  28. Schumacher, J., Joly, N., Rappas, M., Zhang, X. & Buck, M. ( 2006; ). Structures and organisation of AAA+ enhancer binding proteins in transcriptional activation. J Struct Biol 156, 190–199.[CrossRef]
    [Google Scholar]
  29. Schweizer, H. D. ( 1993; ). Small broad-host-range gentamycin resistance gene cassettes for site-specific insertion and deletion mutagenesis. Biotechniques 15, 831–834.
    [Google Scholar]
  30. Sluis, M. K., Sayavedra-Soto, L. A. & Arp, D. J. ( 2002; ). Molecular analysis of the soluble butane monooxygenase from Pseudomonas butanovora. Microbiology 148, 3617–3629.
    [Google Scholar]
  31. Solera, D., Arenghi, F. L., Woelk, T., Galli, E. & Barbieri, P. ( 2004; ). TouR-mediated effector-independent growth phase-dependent activation of the σ 54 Ptou promoter of Pseudomonas stutzeri OX1. J Bacteriol 186, 7353–7363.[CrossRef]
    [Google Scholar]
  32. Stafford, G. P., Scanlan, J., McDonald, I. R. & Murrell, J. C. ( 2003; ). rpoN, mmoR and mmoG, genes involved in regulating the expression of soluble methane monooxygenase in Methylosinus trichosporium OB3b. Microbiology 149, 1771–1784.[CrossRef]
    [Google Scholar]
  33. Takahashi, J., Ichikawa, Y., Sagae, H., Komura, I., Kanou, H. & Yamada, K. ( 1980; ). Isolation and identification of n-butane-assimilating bacterium. Agric Biol Chem 44, 1835–1840.[CrossRef]
    [Google Scholar]
  34. Theisen, A. R., Ali, M. H., Radajewski, S., Dumont, M. G., Dunfield, P. F., McDonald, I. R., Dedysh, S. N., Miguez, C. B. & Murrell, J. C. ( 2005; ). Regulation of methane oxidation in the facultative methanotroph Methylocella silvestris BL2. Mol Microbiol 58, 682–692.[CrossRef]
    [Google Scholar]
  35. Tucker, N. P., D'Autreaux, B., Spiro, S. & Dixon, R. ( 2006; ). Mechanism of transcriptional regulation by the Escherichia coli nitric oxide sensor NorR. Biochem Soc Trans 34, 191–194.[CrossRef]
    [Google Scholar]
  36. van Beilen, J. B. & Funhoff, E. G. ( 2007; ). Alkane hydroxylases involved in microbial alkane degradation. Appl Microbiol Biotechnol 74, 13–21.[CrossRef]
    [Google Scholar]
  37. Vangnai, A. S., Arp, D. J. & Sayavedra-Soto, L. A. ( 2002; ). Two distinct alcohol dehydrogenases participate in butane metabolism in Pseudomonas butanovora. J Bacteriol 184, 1916–1924.[CrossRef]
    [Google Scholar]
  38. Velazquez, F., Fernandez, S. & de Lorenzo, V. ( 2006; ). The upstream-activating sequences of the σ 54 promoter Pu of Pseudomonas putida filter transcription readthrough from upstream genes. J Biol Chem 281, 11940–11948.[CrossRef]
    [Google Scholar]
  39. Xie, Z., Dou, Y., Ping, S., Chen, M., Wang, G., Elmerich, C. & Lin, M. ( 2006; ). Interaction between NifL and NifA in the nitrogen-fixing Pseudomonas stutzeri A1501. Microbiology 152, 3535–3542.[CrossRef]
    [Google Scholar]
  40. Yuste, L., Canosa, I. & Rojo, F. ( 1998; ). Carbon-source-dependent expression of the PalkB promoter from the Pseudomonas oleovorans alkane degradation pathway. J Bacteriol 180, 5218–5226.
    [Google Scholar]
  41. Zuker, M. ( 2003; ). Mfold web server for nucleic acid folding and hybridization prediction. Nucleic Acids Res 31, 3406–3415.[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.2007/012724-0
Loading
/content/journal/micro/10.1099/mic.0.2007/012724-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error