1887

Abstract

’ uses an alcohol-inducible alkane monooxygenase (BMO) to grow on C–C -alkanes. Five ORFs were identified flanking the BMO structural genes. Two of the ORFs, , encoding a putative -transcriptional regulator BmoR, and , encoding a putative GroEL chaperonin BmoG, were analysed by gene-inactivation experiments. The BmoR-deficient mutant grew at slower growth rates than the wild-type on C–C -alkanes and showed little to no growth on C–C -alkanes within 7 days. A BmoR-deficient mutant was constructed in the ‘ : :  reporter strain and used to test whether was involved in induction after growth on C–C carbon sources. In acetate- or lactate-grown cells, C–C -alcohols failed to induce -galactosidase activity. In contrast, in propionate-, butyrate- or pentanoate-grown cells, -butanol induced ∼45 % of the -galactosidase activity observed in the control  : :  strain. In propionate-grown cells, C–C -alcohols induced -galactosidase activity, whereas C and C -alcohols did not. BmoR may act as a -transcriptional regulator of that is controlled by the -alcohol produced in the alkane oxidation. During growth on short-chain-length fatty acids, however, another BMO regulatory system seems to be activated to promote transcription of by short-chain-length alcohols (i.e. ≤C). The -deficient mutant did not grow on C–C -alkanes; however, it was capable of transcribing and of the BMO operon. BmoG may act as a chaperonin to assemble competent BMO.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.2007/012724-0
2008-01-01
2020-07-07
Loading full text...

Full text loading...

/deliver/fulltext/micro/154/1/139.html?itemId=/content/journal/micro/10.1099/mic.0.2007/012724-0&mimeType=html&fmt=ahah

References

  1. Abril M. A., Michan C., Timmis K. N., Ramos J. L.. 1989; Regulator and enzyme specificities of the TOL plasmid-encoded upper pathway for degradation of aromatic hydrocarbons and expansion of the substrate range of the pathway. J Bacteriol171:6782–6790
    [Google Scholar]
  2. Ali H., Scanlan J., Dumont M. G., Murrell J. C.. 2006; Duplication of the mmoX gene in Methylosinus sporium : cloning, sequencing and mutational analysis. Microbiology152:2931–2942
    [Google Scholar]
  3. Anzai Y., Kim H., Park J. Y., Wakabayashi H., Oyaizu H.. 2000; Phylogenetic affiliation of the pseudomonads based on 16S rRNA sequence. Int J Syst Evol Microbiol50:1563–1589
    [Google Scholar]
  4. Beauvais L. G., Lippard S. J.. 2005; Reactions of the peroxo intermediate of soluble methane monooxygenase hydroxylase with ethers. J Am Chem Soc127:7370–7378
    [Google Scholar]
  5. Blevins W. T., Perry J. J.. 1972; Metabolism of propane, n -propylamine, and propionate by hydrocarbon-utilizing bacteria. J Bacteriol112:513–518
    [Google Scholar]
  6. Brazeau B. J., Austin R. N., Tarr C., Groves J. T., Lipscomb J. D.. 2001; Intermediate Q from soluble methane monooxygenase hydroxylates the mechanistic substrate probe norcarane: evidence for a stepwise reaction. J Am Chem Soc123:11831–11837
    [Google Scholar]
  7. Campbell J. W., Morgan-Kiss R. M., Cronan J. E. Jr. 2003; A new Escherichia coli metabolic competency: growth on fatty acids by a novel anaerobic beta-oxidation pathway. Mol Microbiol47:793–805
    [Google Scholar]
  8. Csaki R., Bodrossy L., Klem J., Murrell J. C., Kovacs K. L.. 2003; Genes involved in the copper-dependent regulation of soluble methane monooxygenase of Methylococcus capsulatus (Bath): cloning, sequencing and mutational analysis. Microbiology149:1785–1795
    [Google Scholar]
  9. De Carlo S., Chen B., Hoover T. R., Kondrashkina E., Nogales E., Nixon B. T.. 2006; The structural basis for regulated assembly and function of the transcriptional activator NtrC. Genes Dev20:1485–1495
    [Google Scholar]
  10. Doughty D. M., Sayavedra-Soto L. A., Arp D. J., Bottomley P. J.. 2005; Effects of dichloroethene isomers on the induction and activity of butane monooxygenase in the alkane-oxidizing bacterium “ Pseudomonas butanovora ”. Appl Environ Microbiol71:6054–6059
    [Google Scholar]
  11. Doughty D. M., Sayavedra-Soto L. A., Arp D. J., Bottomley P. J.. 2006; Product repression of alkane monooxygenase expression in Pseudomonas butanovora . J Bacteriol188:2586–2592
    [Google Scholar]
  12. Doughty D. M., Halsey K. H., Sayavedra-Soto L. A., Arp D. J., Bottomley P. J.. 2007; Alkane monooxygenase inactivation by propionate in Pseudomonas butanovora ; physiological and biochemical implications. Microbiology153:3722–3729
    [Google Scholar]
  13. Gornall A. G., Bardawill C. J., David M. M.. 1949; Determination of serum proteins by means of the Biuret reaction. J Biol Chem177:751–766
    [Google Scholar]
  14. Halsey K. H., Sayavedra-Soto L. A., Bottomley P. J., Arp D. J.. 2006; Site-directed amino acid substitutions in the hydroxylase alpha subunit of butane monooxygenase from Pseudomonas butanovora : implications for substrates knocking at the gate. J Bacteriol188:4962–4969
    [Google Scholar]
  15. Hamamura N., Page C., Long T., Semprini L., Arp D. J.. 1997; Chloroform cometabolism by butane-grown CF8, Pseudomonas butanovora , and Mycobacterium vaccae JOB5 and methane-grown Methylosinus trichosporium OB3b. Appl Environ Microbiol63:3607–3613
    [Google Scholar]
  16. Hamamura N., Yeager C., Arp D. J.. 2001; Two distinct monooxygenases for alkane oxidation in Nocarioides sp. strain CF8. Appl Environ Microbiol67:4992–4998
    [Google Scholar]
  17. Hanahan D.. 1983; Studies on transformation of Escherichia coli with plasmids. J Mol Biol166:557–580
    [Google Scholar]
  18. Kruger N., Steinbuchel A.. 1992; Identification of acoR , a regulatory gene for the expression of genes essential for acetoin catabolism in Alcaligenes eutrophus H16. J Bacteriol174:4391–4400
    [Google Scholar]
  19. Lund P. A.. 2001; Microbial molecular chaperones. Adv Microb Physiol44:93–140
    [Google Scholar]
  20. Marín M. M., Smits T. H., van Beilen J. B., Rojo F.. 2001; The alkane hydroxylase gene of Burkholderia cepacia RR10 is under catabolite repression control. J Bacteriol183:4202–4209
    [Google Scholar]
  21. Marín M. M., Yuste L., Rojo F.. 2003; Differential expression of the components of the two alkane hydroxylases from Pseudomonas aeruginosa . J Bacteriol185:3232–3237
    [Google Scholar]
  22. Morgan-Kiss R. M., Cronan J. E.. 2004; The Escherichia coli fadK ( ydiD ) gene encodes an anerobically regulated short chain acyl-CoA synthetase. J Biol Chem279:37324–37333
    [Google Scholar]
  23. Morsczeck C., Berger S., Plum G.. 2001; The macrophage-induced gene ( mig ) of Mycobacterium avium encodes a medium-chain acyl-coenzyme A synthetase. Biochim Biophys Acta 1521;59–65
    [Google Scholar]
  24. Olivera E. R., Carnicero D., Garcia B., Minambres B., Moreno M. A., Canedo L., Dirusso C. C., Naharro G., Luengo J. M.. 2001; Two different pathways are involved in the beta-oxidation of n -alkanoic and n -phenylalkanoic acids in Pseudomonas putida U: genetic studies and biotechnological applications. Mol Microbiol39:863–874
    [Google Scholar]
  25. Rappas M., Bose D., Zhang X.. 2007; Bacterial enhancer-binding proteins: unlocking σ 54-dependent gene transcription. Curr Opin Struct Biol17:110–116
    [Google Scholar]
  26. Sambrook J., Fritsch E. F., Maniatis T.. 1989; Molecular Cloning : a Laboratory Manual , 2nd edn. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
    [Google Scholar]
  27. Sayavedra-Soto L. A., Doughty D. M., Kurth E. G., Bottomley P. J., Arp D. J.. 2005; Product and product-independent induction of butane oxidation in Pseudomonas butanovora . FEMS Microbiol Lett250:111–116
    [Google Scholar]
  28. Schumacher J., Joly N., Rappas M., Zhang X., Buck M.. 2006; Structures and organisation of AAA+ enhancer binding proteins in transcriptional activation. J Struct Biol156:190–199
    [Google Scholar]
  29. Schweizer H. D.. 1993; Small broad-host-range gentamycin resistance gene cassettes for site-specific insertion and deletion mutagenesis. Biotechniques15:831–834
    [Google Scholar]
  30. Sluis M. K., Sayavedra-Soto L. A., Arp D. J.. 2002; Molecular analysis of the soluble butane monooxygenase from Pseudomonas butanovora . Microbiology148:3617–3629
    [Google Scholar]
  31. Solera D., Arenghi F. L., Woelk T., Galli E., Barbieri P.. 2004; TouR-mediated effector-independent growth phase-dependent activation of the σ 54 P tou promoter of Pseudomonas stutzeri OX1. J Bacteriol186:7353–7363
    [Google Scholar]
  32. Stafford G. P., Scanlan J., McDonald I. R., Murrell J. C.. 2003; rpoN , mmoR and mmoG , genes involved in regulating the expression of soluble methane monooxygenase in Methylosinus trichosporium OB3b. Microbiology149:1771–1784
    [Google Scholar]
  33. Takahashi J., Ichikawa Y., Sagae H., Komura I., Kanou H., Yamada K.. 1980; Isolation and identification of n -butane-assimilating bacterium. Agric Biol Chem44:1835–1840
    [Google Scholar]
  34. Theisen A. R., Ali M. H., Radajewski S., Dumont M. G., Dunfield P. F., McDonald I. R., Dedysh S. N., Miguez C. B., Murrell J. C.. 2005; Regulation of methane oxidation in the facultative methanotroph Methylocella silvestris BL2. Mol Microbiol58:682–692
    [Google Scholar]
  35. Tucker N. P., D'Autreaux B., Spiro S., Dixon R.. 2006; Mechanism of transcriptional regulation by the Escherichia coli nitric oxide sensor NorR. Biochem Soc Trans34:191–194
    [Google Scholar]
  36. van Beilen J. B., Funhoff E. G.. 2007; Alkane hydroxylases involved in microbial alkane degradation. Appl Microbiol Biotechnol74:13–21
    [Google Scholar]
  37. Vangnai A. S., Arp D. J., Sayavedra-Soto L. A.. 2002; Two distinct alcohol dehydrogenases participate in butane metabolism in Pseudomonas butanovora . J Bacteriol184:1916–1924
    [Google Scholar]
  38. Velazquez F., Fernandez S., de Lorenzo V.. 2006; The upstream-activating sequences of the σ 54 promoter Pu of Pseudomonas putida filter transcription readthrough from upstream genes. J Biol Chem281:11940–11948
    [Google Scholar]
  39. Xie Z., Dou Y., Ping S., Chen M., Wang G., Elmerich C., Lin M.. 2006; Interaction between NifL and NifA in the nitrogen-fixing Pseudomonas stutzeri A1501. Microbiology152:3535–3542
    [Google Scholar]
  40. Yuste L., Canosa I., Rojo F.. 1998; Carbon-source-dependent expression of the PalkB promoter from the Pseudomonas oleovorans alkane degradation pathway. J Bacteriol180:5218–5226
    [Google Scholar]
  41. Zuker M.. 2003; Mfold web server for nucleic acid folding and hybridization prediction. Nucleic Acids Res31:3406–3415
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.2007/012724-0
Loading
/content/journal/micro/10.1099/mic.0.2007/012724-0
Loading

Data & Media loading...

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error