Hypoxic conditions and iron restriction affect the cell-wall proteome of grown under vagina-simulative conditions Free

Abstract

Proteins that are covalently linked to the skeletal polysaccharides of the cell wall of play a major role in the colonization of the vaginal mucosal surface, which may result in vaginitis. Here we report on the variability of the cell-wall proteome of as a function of the ambient O concentration and iron availability. For these studies, cells were cultured at 37 °C in vagina-simulative medium and aerated with a gas mixture consisting of 6 % (v/v) CO, 0.01–7 % (v/v) O and N, reflecting the gas composition in the vaginal environment. Under these conditions, the cells grew exclusively in the non-hyphal form, with the relative growth rate being halved at ∼0.02 % (v/v) O. Using tandem MS and immunoblot analysis, we identified 15 covalently linked glycosylphosphatidylinositol (GPI) proteins in isolated walls (Als1, Als3, Cht2, Crh11, Ecm33, Hwp1, Pga4, Pga10, Phr2, Rbt5, Rhd3, Sod4, Ssr1, Ywp1, Utr2) and 4 covalently linked non-GPI proteins (MP65, Pir1, Sim1/Sun42, Tos1). Five of them (Als3, Hwp1, Sim1, Tos1, Utr2) were absent in cells grown in rich medium. Immunoblot analysis revealed that restricted O availability resulted in higher levels of the non-GPI protein Pir1, a putative -1,3-glucan cross-linking protein, and of the GPI-proteins Hwp1, an adhesion protein, and Pga10 and Rbt5, which are involved in iron acquisition. Addition of the iron chelator ferrozine at saturating levels of O resulted in higher cell wall levels of Hwp1 and Rbt5, suggesting that the responses to hypoxic conditions and iron restriction are related.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.2007/012617-0
2008-02-01
2024-03-29
Loading full text...

Full text loading...

/deliver/fulltext/micro/154/2/510.html?itemId=/content/journal/micro/10.1099/mic.0.2007/012617-0&mimeType=html&fmt=ahah

References

  1. Albrecht A., Felk A., Pichova I., Naglik J. R., Schaller M., de Groot P., Maccallum D., Odds F. C., Schäfer W. other authors 2006; Glycosylphosphatidylinositol-anchored proteases of Candida albicans target proteins necessary for both cellular processes and host–pathogen interactions. J Biol Chem 281:688–694
    [Google Scholar]
  2. Argimon S., Wishart J. A., Leng R., Macaskill S., Mavor A., Alexandris T., Nicholls S., Knight A. W., Enjalbert B. other authors 2007; Developmental regulation of an adhesin gene during cellular morphogenesis in the fungal pathogen Candida albicans . Eukaryot Cell 6:682–692
    [Google Scholar]
  3. Bensen E. S., Martin S. J., Li M., Berman J., Davis D. A. 2004; Transcriptional profiling in Candida albicans reveals new adaptive responses to extracellular pH and functions for Rim101p. Mol Microbiol 54:1335–1351
    [Google Scholar]
  4. Berg J. M., Tymoczko J. L., Stryer L. 2007 Biochemistry , 6th edn. New York: W. H. Freeman;
  5. Blankenship J. R., Mitchell A. P. 2006; How to build a biofilm: a fungal perspective. Curr Opin Microbiol 9:588–594
    [Google Scholar]
  6. Bom I. J., Dielbandhoesing S. K., Harvey K. N., Oomes S. J., Klis F. M., Brul S. 1998; A new tool for studying the molecular architecture of the fungal cell wall: one-step purification of recombinant trichoderma β -(1–6)-glucanase expressed in Pichia pastoris . Biochim Biophys Acta 1425419–424
    [Google Scholar]
  7. Braun B. R., Head W. S., Wang M. X., Johnson A. D. 2000; Identification and characterization of TUP1 -regulated genes in Candida albicans . Genetics 156:31–44
    [Google Scholar]
  8. Calderone R. A. 2002; Taxonomy and biology of Candida . In Candida and Candidiasis pp 15–27 Edited by Calderone R. A. Washington, DC: American Society for Microbiology;
    [Google Scholar]
  9. Cazzulo J. J., Claisse L. M., Stoppani A. O. 1968; Carboxylase levels and carbon dioxide fixation in baker's yeast. J Bacteriol 96:623–628
    [Google Scholar]
  10. Chen M. H., Shen Z. M., Bobin S., Kahn P. C., Lipke P. N. 1995; Structure of Saccharomyces cerevisiae α -agglutinin. Evidence for a yeast cell wall protein with multiple immunoglobulin-like domains with atypical disulfides. J Biol Chem 270:26168–26177
    [Google Scholar]
  11. Cheng G., Wozniak K., Wallig M. A., Fidel P. L. Jr, Trupin S. R., Hoyer L. L. 2005; Comparison between Candida albicans agglutinin-like sequence gene expression patterns in human clinical specimens and models of vaginal candidiasis. Infect Immun 73:1656–1663
    [Google Scholar]
  12. Copping V. M., Barelle C. J., Hube B., Gow N. A., Brown A. J., Odds F. C. 2005; Exposure of Candida albicans to antifungal agents affects expression of SAP2 and SAP9 secreted proteinase genes. J Antimicrob Chemother 55:645–654
    [Google Scholar]
  13. De Backer M. D., Ilyina T., Ma X. J., Vandoninck S., Luyten W. H., Vanden Bossche H. 2001; Genomic profiling of the response of Candida albicans to itraconazole treatment using a DNA microarray. Antimicrob Agents Chemother 45:1660–1670
    [Google Scholar]
  14. De Bernardis F., Muhlschlegel F. A., Cassone A., Fonzi W. A. 1998; The pH of the host niche controls gene expression in and virulence of Candida albicans . Infect Immun 66:3317–3325
    [Google Scholar]
  15. De Groot P. W. J., Hellingwerf K. J., Klis F. M. 2003; Genome-wide identification of fungal GPI proteins. Yeast 20:781–796
    [Google Scholar]
  16. De Groot P. W. J., De Boer A. D., Cunningham J., Dekker H. L., De Jong L., Hellingwerf K. J., De Koster C., Klis F. M. 2004; Proteomic analysis of Candida albicans cell walls reveals covalently bound carbohydrate-active enzymes and adhesins. Eukaryot Cell 3:955–965
    [Google Scholar]
  17. De Groot P. W. J., Brandt B. W., Klis F. M. 2007; Cell wall biology of Candida . In Candida Comparative and Functional Genomics pp 293–325 Norfolk: Caister Academic Press;
    [Google Scholar]
  18. Fidel P. L. J., Sobel J. D. 2002; Host defense against vaginal candidiasis. In Candida and Candidiasis pp 193–209 Washington, DC: American Society for Microbiology;
    [Google Scholar]
  19. Fonzi W. A. 1999; PHR1 and PHR2 of Candida albicans encode putative glycosidases required for proper cross-linking of β -1,3-and β -1,6-glucans. J Bacteriol 181:7070–7079
    [Google Scholar]
  20. Fonzi W. A., Irwin M. Y. 1993; Isogenic strain construction and gene mapping in Candida albicans . Genetics 134:717–728
    [Google Scholar]
  21. Fradin C., De Groot P., MacCallum D., Schaller M., Klis F., Odds F. C., Hube B. 2005; Granulocytes govern the transcriptional response, morphology and proliferation of Candida albicans in human blood. Mol Microbiol 56:397–415
    [Google Scholar]
  22. Garcera A., Martinez A. I., Castillo L., Elorza M. V., Sentandreu R., Valentin E. 2003; Identification and study of a Candida albicans protein homologous to Saccharomyces cerevisiae Ssr1p, an internal cell-wall protein. Microbiology 149:2137–2145
    [Google Scholar]
  23. Garcera A., Castillo L., Martinez A. I., Elorza M. V., Valentin E., Sentandreu R. 2005; Anchorage of Candida albicans Ssr1 to the cell wall, and transcript profiling of the null mutant. Res Microbiol 156:911–920
    [Google Scholar]
  24. Garcia-Sanchez S., Aubert S., Iraqui I., Janbon G., Ghigo J. M., d'Enfert C. 2004; Candida albicans biofilms: a developmental state associated with specific and stable gene expression patterns. Eukaryot Cell 3:536–545
    [Google Scholar]
  25. Granger B. L., Flenniken M. L., Davis D. A., Mitchell A. P., Cutler J. E. 2005; Yeast wall protein 1 of Candida albicans . Microbiology 151:1631–1644
    [Google Scholar]
  26. Hoyer L. L., Payne T. L., Bell M., Myers A. M., Scherer S. 1998; Candida albicans ALS3 and insights into the nature of the ALS gene family. Curr Genet 33:451–459
    [Google Scholar]
  27. Ihmels J., Bergmann S., Berman J., Barkai N. 2005; Comparative gene expression analysis by differential clustering approach: application to the Candida albicans transcription program. PLoS Genet 1:e39
    [Google Scholar]
  28. Kaplan J., McVey Ward D., Crisp R. J., Philpott C. C. 2006; Iron-dependent metabolic remodeling in S. cerevisiae . Biochim Biophys Acta 1763646–651
    [Google Scholar]
  29. Kapteyn J. C., Ter Riet B., Vink E., Blad S., De Nobel H., Van den Ende H., Klis F. M. 2001; Low external pH induces HOG1 -dependent changes in the organization of the Saccharomyces cerevisiae cell wall. Mol Microbiol 39:469–479
    [Google Scholar]
  30. Klis F. M., Ram A. F. J., De Groot P. W. J. 2007; A molecular and genomic view of the fungal cell wall. In Biology of the Fungal Cell pp 97–120 Edited by Howard R. J., Gow N. A. R. Berlin, Heidelberg: Springer-Verlag;
    [Google Scholar]
  31. Klotz S. A., Gaur N. K., De Armond R., Sheppard D., Khardori N., Edwards J. E. Jr, Lipke P. N., El-Azizi M. 2007; Candida albicans Als proteins mediate aggregation with bacteria and yeasts. Med Mycol 45:363–370
    [Google Scholar]
  32. Kosman D. J. 2003; Molecular mechanisms of iron uptake in fungi. Mol Microbiol 47:1185–1197
    [Google Scholar]
  33. Lan C. Y., Rodarte G., Murillo L. A., Jones T., Davis R. W., Dungan J., Newport G., Agabian N. 2004; Regulatory networks affected by iron availability in Candida albicans . Mol Microbiol 53:1451–1469
    [Google Scholar]
  34. Lee R. E., Liu T. T., Barker K. S., Lee R. E., Rogers P. D. 2005; Genome-wide expression profiling of the response to ciclopirox olamine in Candida albicans . J Antimicrob Chemother 55:655–662
    [Google Scholar]
  35. Li F., Svarovsky M. J., Karlsson A. J., Wagner J. P., Marchillo K., Oshel P., Andes D., Palecek S. P. 2007; Eap1p, an adhesin that mediates Candida albicans biofilm formation in vitro and in vivo . Eukaryot Cell 6:931–939
    [Google Scholar]
  36. Liener I. E., Buchanan D. L. 1951; The fixation of carbon dioxide by growing and nongrowing yeast. J Bacteriol 61:527–534
    [Google Scholar]
  37. Liu T. T., Lee R. E. B., Barker K. S., Lee R. E., Wei L., Homayouni R., Rogers P. D. 2005; Genome-wide expression profiling of the response to azole, polyene, echinocandin, and pyrimidine antifungal agents in Candida albicans . Antimicrob Agents Chemother 49:2226–2236
    [Google Scholar]
  38. Mao Y., Zhang Z., Wong B. 2003; Use of green fluorescent protein fusions to analyse the N- and C-terminal signal peptides of GPI-anchored cell wall proteins in Candida albicans . Mol Microbiol 50:1617–1628
    [Google Scholar]
  39. Martchenko M., Alarco A. M., Harcus D., Whiteway M. 2004; Superoxide dismutases in Candida albicans : transcriptional regulation and functional characterization of the hyphal-induced SOD5 gene. Mol Biol Cell 15:456–467
    [Google Scholar]
  40. Martinez A. I., Castillo L., Garcera A., Elorza M. V., Valentin E., Sentandreu R. 2004; Role of Pir1 in the construction of the Candida albicans cell wall. Microbiology 150:3151–3161
    [Google Scholar]
  41. Martinez-Lopez R., Park H., Myers C. L., Gil C., Filler S. G. 2006; Candida albicans Ecm33p is important for normal cell wall architecture and interactions with host cells. Eukaryot Cell 5:140–147
    [Google Scholar]
  42. McCreath K. J., Specht C. A., Robbins P. W. 1995; Molecular cloning and characterization of chitinase genes from Candida albicans . Proc Natl Acad Sci U S A 92:2544–2548
    [Google Scholar]
  43. Moosa M. Y., Sobel J. D., Elhalis H., Du W., Akins R. A. 2004; Fungicidal activity of fluconazole against Candida albicans in a synthetic vagina-simulative medium. Antimicrob Agents Chemother 48:161–167
    [Google Scholar]
  44. Mrša V., Seidl T., Gentzsch M., Tanner W. 1997; Specific labelling of cell wall proteins by biotinylation. Identification of four covalently linked O -mannosylated proteins of Saccharomyces cerevisiae . Yeast 13:1145–1154
    [Google Scholar]
  45. Mühlschlegel F. A., Fonzi W. A. 1997; PHR2 of Candida albicans encodes a functional homolog of the pH-regulated gene PHR1 with an inverted pattern of pH-dependent expression. Mol Cell Biol 17:5960–5967
    [Google Scholar]
  46. Naglik J. R., Fostira F., Ruprai J., Staab J. F., Challacombe S. J., Sundstrom P. 2006; Candida albicans HWP1 gene expression and host antibody responses in colonization and disease. J Med Microbiol 55:1323–1327
    [Google Scholar]
  47. Nobile C. J., Nett J. E., Andes D. R., Mitchell A. P. 2006; Function of Candida albicans adhesin Hwp1 in biofilm formation. Eukaryot Cell 5:1604–1610
    [Google Scholar]
  48. Owen D. H., Katz D. F. 1999; A vaginal fluid simulant. Contraception 59:91–95
    [Google Scholar]
  49. Pardini G., De Groot P. W. J., Coste A. T., Karababa M., Klis F. M., de Koster C. G., Sanglard D. 2006; The CRH family coding for cell wall glycosylphosphatidylinositol proteins with a predicted transglycosidase domain affects cell wall organization and virulence of Candida albicans . J Biol Chem 281:40399–40411
    [Google Scholar]
  50. Phan Q. T., Myers C. L., Fu Y., Sheppard D. C., Yeaman M. R., Welch W. H., Ibrahim A. S., Edwards J. E., Filler S. G. 2007; Als3 is a Candida albicans invasin that binds to cadherins and induces endocytosis by host cells. PLoS Biol 5:e64
    [Google Scholar]
  51. Ramage G., Martinez J. P., Lopez-Ribot J. L. 2006; Candida biofilms on implanted biomaterials: a clinically significant problem. FEMS Yeast Res 6:979–986
    [Google Scholar]
  52. Richard M. L., Plaine A. 2007; Comprehensive analysis of glycosylphosphatidylinositol-anchored proteins in Candida albicans . Eukaryot Cell 6:119–133
    [Google Scholar]
  53. Ruiz-Herrera J., Elorza M. V., Valentin E., Sentandreu R. 2006; Molecular organization of the cell wall of Candida albicans and its relation to pathogenicity. FEMS Yeast Res 6:14–29
    [Google Scholar]
  54. Russo P., Kalkkinen N., Sareneva H., Paakkola J., Makarow M. 1992; A heat shock gene from Saccharomyces cerevisiae encoding a secretory glycoprotein. Proc Natl Acad Sci U S A 89:3671–3675
    [Google Scholar]
  55. Sandini S., La Valle R., De Bernardis F., Macri C., Cassone A. 2007; The 65 kDa mannoprotein gene of Candida albicans encodes a putative β -glucanase adhesin required for hyphal morphogenesis and experimental pathogenicity. Cell Microbiol 9:1223–1238
    [Google Scholar]
  56. Schweizer M. 2004; Lipids and membranes. In The Metabolism and Molecular Physiology of Saccharomyces cerevisiae pp 140–223 Edited by Dickinson J. R., Schweizer M. Boca Raton: CRC Press;
    [Google Scholar]
  57. Setiadi E. R., Doedt T., Cottier F., Noffz C., Ernst J. F. 2006; Transcriptional response of Candida albicans to hypoxia: linkage of oxygen sensing and Efg1p-regulatory networks. J Mol Biol 361:399–411
    [Google Scholar]
  58. Sigle H. C., Thewes S., Niewerth M., Korting H. C., Schafer-Korting M., Hube B. 2005; Oxygen accessibility and iron levels are critical factors for the antifungal action of ciclopirox against Candida albicans . J Antimicrob Chemother 55:663–673
    [Google Scholar]
  59. Snide J. L., Sundstrom P. 2006; A characterization of HWP1 promoter activation in pseudohyphal cells in Candida albicans . In 8th ASM Conference on Candida and Candidiasis pp 103 Washington, DC: American Society for Microbiology;
    [Google Scholar]
  60. Sobel J. D. 2007; Vulvovaginal candidosis. Lancet 369:1961–1971
    [Google Scholar]
  61. Sohn K., Urban C., Brunner H., Rupp S. 2003; EFG1 is a major regulator of cell wall dynamics in Candida albicans as revealed by DNA microarrays. Mol Microbiol 47:89–102
    [Google Scholar]
  62. Sohn K., Senyurek I., Fertey J., Konigsdorfer A., Joffroy C., Hauser N., Zelt G., Brunner H., Rupp S. 2006; An in vitro assay to study the transcriptional response during adherence of Candida albicans to different human epithelia. FEMS Yeast Res 6:1085–1093
    [Google Scholar]
  63. Staab J. F., Ferrer C. A., Sundstrom P. 1996; Developmental expression of a tandemly repeated, proline-and glutamine-rich amino acid motif on hyphal surfaces on Candida albicans . J Biol Chem 271:6298–6305
    [Google Scholar]
  64. Staab J. F., Bradway S. D., Fidel P. L., Sundstrom P. 1999; Adhesive and mammalian transglutaminase substrate properties of Candida albicans Hwp1. Science 283:1535–1538
    [Google Scholar]
  65. Sundstrom P. 1999; Adhesins in Candida albicans . Curr Opin Microbiol 2:353–357
    [Google Scholar]
  66. Sweet S. P., Douglas L. J. 1991; Effect of iron deprivation on surface composition and virulence determinants of Candida albicans . J Gen Microbiol 137:859–865
    [Google Scholar]
  67. Wagner G., Ottesen B. 1982; Vaginal physiology during menstruation. Ann Intern Med 96:921–923
    [Google Scholar]
  68. Weissman Z., Kornitzer D. 2004; A family of Candida cell surface haem-binding proteins involved in haemin and haemoglobin-iron utilization. Mol Microbiol 53:1209–1220
    [Google Scholar]
  69. Yin Q. Y., de Groot P. W. J., Dekker H. L., de Jong L., Klis F. M., de Koster C. G. 2005; Comprehensive proteomic analysis of Saccharomyces cerevisiae cell walls: identification of proteins covalently attached via glycosylphosphatidylinositol remnants or mild alkali-sensitive linkages. J Biol Chem 280:20894–20901
    [Google Scholar]
  70. Zhao X., Daniels K. J., Oh S. H., Green C. B., Yeater K. M., Soll D. R., Hoyer L. L. 2006; Candida albicans Als3p is required for wild-type biofilm formation on silicone elastomer surfaces. Microbiology 152:2287–2299
    [Google Scholar]
  71. Zupancic M. L., Cormack B. P. 2007; Candida cell wall proteins at the host–pathogen interface. In Candida Comparative and Functional Genomics pp 327–348 Edited by D'Enfert B., Hube C. Norfolk: Caister Academic Press;
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.2007/012617-0
Loading
/content/journal/micro/10.1099/mic.0.2007/012617-0
Loading

Data & Media loading...

Most cited Most Cited RSS feed