1887

Abstract

, the primary causative agent of human dental caries, grows as a biofilm on the tooth surface, where it metabolizes dietary carbohydrates and generates acid byproducts that demineralize tooth enamel. A drop in plaque pH stimulates an adaptive acid-tolerance response (ATR) in this oral pathogen that allows it to survive acid challenge at pHs as low as 3.0. In the present study, we describe the growth of an mutant, GMS901, that harbours an insertion–deletion mutation in , a gene that encodes a transcriptional regulatory protein. The mutant is acid-sensitive and significantly compromised in its ATR relative to the UA159 wild-type progenitor strain. Consistent with these findings are the results of real-time quantitative RT-PCR (qRT-PCR) experiments that support the GcrR-regulated expression of known ATR genes, including and . Although we observed transcription that was not responsive to acidic pH, we did note a significant increase in expression when cells were grown in a manganese-restricted medium. Interestingly, the results of gel mobility shift assays indicate that the SloR metalloregulatory protein is a potential regulator of by virtue of its manganese-dependent binding to the promoter region, and expression studies support the hypothesis that transcription is responsive to manganese deprivation and acidic pH. Taking these results together, we propose that SloR–Mn modulates expression as part of a general stress response, and that GcrR acts downstream of SloR to control the ATR.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.2007/012492-0
2008-04-01
2020-08-11
Loading full text...

Full text loading...

/deliver/fulltext/micro/154/4/1132.html?itemId=/content/journal/micro/10.1099/mic.0.2007/012492-0&mimeType=html&fmt=ahah

References

  1. Arikado E., Ishihara H., Ehara T., Shibata C., Saito H., Kakegawa T., Igarashi K., Kobayashi H.. 1999; Enzyme level of enterococcal F1F0-ATPase is regulated by pH at the step of assembly. Eur J Biochem259:262–268
    [Google Scholar]
  2. Cotter P. D., Hill C.. 2003; Surviving the acid test: responses of Gram-positive bacteria to low pH. Microbiol Mol Biol Rev67:429–453
    [Google Scholar]
  3. Cotter P. D., Emerson N., Gahan C. G., Hill C.. 1999; Identification and disruption of lisRK, a genetic locus encoding a two-component signal transduction system involved in stress tolerance and virulence in Listeria monocytogenes. J Bacteriol181:6840–6843
    [Google Scholar]
  4. Crowley P. J., Svensater G., Snoep J. L., Bleiweis A. S., Brady L. J.. 2004; An ffh mutant of Streptococcus mutans is viable and able to physiologically adapt to low pH in continuous culture. FEMS Microbiol Lett234:315–324
    [Google Scholar]
  5. Dalton T. L., Scott J. R.. 2004; CovS inactivates CovR and is required for growth under conditions of general stress in Streptococcus pyogenes. J Bacteriol186:3928–3937
    [Google Scholar]
  6. Farber J. M., Peterkin P. I.. 1991; Listeria monocytogenes, a food-borne pathogen. Microbiol Rev55:476–511
    [Google Scholar]
  7. Ferreira A., O'Byrne C. P., Boor K. J.. 2001; Role of σB in heat, ethanol, acid, and oxidative stress resistance and during carbon starvation in Listeria monocytogenes. Appl Environ Microbiol67:4454–4457
    [Google Scholar]
  8. Flahaut S., Frere J., Boutibonnes P., Auffray Y.. 1996a; Comparison of the bile salts and sodium dodecyl sulfate stress responses in Enterococcus faecalis. Appl Environ Microbiol62:2416–2420
    [Google Scholar]
  9. Flahaut S., Hartke A., Giard J. C., Benachour A., Boutibonnes P., Auffray Y.. 1996b; Relationship between stress response toward bile salts, acid and heat treatment in Enterococcus faecalis. FEMS Microbiol Lett138:49–54
    [Google Scholar]
  10. Foster J. W., Hall H. K.. 1990; Adaptive acidification tolerance response of Salmonella typhimurium. J Bacteriol172:771–778
    [Google Scholar]
  11. Fozo E. M., Quivey R. G. Jr. 2004; The fabM gene product of Streptococcus mutans is responsible for the synthesis of monounsaturated fatty acids and is necessary for survival at low pH. J Bacteriol186:4152–4158
    [Google Scholar]
  12. Fozo E. M., Scott-Anne K., Koo H., Quivey R. G. Jr. 2007; Role of unsaturated fatty acid biosynthesis in virulence of Streptococcus mutans. Infect Immun75:1537–1539
    [Google Scholar]
  13. Graham M. R., Smmot L. M., Lux Migliaccio C. A., Virtaneva K., Sturdevant D. E., Porcella S. F., Federle M. J., Adams G. J., Scott J. R., Musser J. M.. 2002; Virulence control in group A Streptococcus by a two-component gene regulatory system: global expression profiling and in vivo infection modeling. Proc Natl Acad Sci U S A99:13855–13860
    [Google Scholar]
  14. Griswold A. R., Jameson-Lee M., Burne R. A.. 2006; Regulation and physiologic significance of the agmatine deiminase system of Streptococcus mutans UA159. J Bacteriol188:834–841
    [Google Scholar]
  15. Gutierrez J. A., Crowley P. J., Cvitkovitch D. G., Brady L. J., Hamilton I. R., Hillman J. D., Bleiweis A. S.. 1999; Streptococcus mutans ffh, a gene encoding a homologue of the 54 kDa subunit of the signal recognition particle, is involved in resistance to acid stress. Microbiology145:357–366
    [Google Scholar]
  16. Hamilton I. R., Buckley N. D.. 1991; Adaptation by Streptococcus mutans to acid tolerance. Oral Microbiol Immunol6:65–71
    [Google Scholar]
  17. Hamilton I. R., Svensater G.. 1998; Acid-regulated proteins induced by Streptococcus mutans and other oral bacteria during acid shock. Oral Microbiol Immunol13:292–300
    [Google Scholar]
  18. Hanna M. N., Ferguson R. J., Cvitkovitch D. G.. 2001; uvrA is an acid-inducible gene involved in the adaptive response to low pH in Streptococcus mutans. J Bacteriol183:5964–5973
    [Google Scholar]
  19. Idone V., Brendtro S., Gillespie R., Kocaj S., Peterson E., Rendi M., Warren W., Mickalek S., Krastel K.. other authors 2003; Effect of an orphan response regulator on S. mutans sucrose-dependent adherence and cariogenesis. Infect Immun71:4351–4360
    [Google Scholar]
  20. Jayaraman G. C., Penders J. E., Burne R. A.. 1997; Transcriptional analysis of the Streptococcus mutans hrcA, grpE and dnaK genes and regulation of expression in response to heat shock and environmental acidification. Mol Microbiol25:329–341
    [Google Scholar]
  21. Jensen M. E., Polansky P. J., Schachtele C. F.. 1982; Plaque sampling and telemetry for monitoring acid production on human buccal tooth surfaces. Arch Oral Biol27:21–31
    [Google Scholar]
  22. Jiang S.-M., Cieslewica M. J., Kasper D. L., Wessels M. R.. 2005; Regulation of virulence by a two-component system in group B Streptococcus. J Bacteriol187:1105–1113
    [Google Scholar]
  23. Kitten T., Munro C. L., Michalek S. M., Macrina F. L.. 2000; Genetic characterization of a Streptococcus mutans LraI family operon and role in virulence. Infect Immun68:4441–4451
    [Google Scholar]
  24. Korithoski B., Krastel K., Cvitkovitch D. G.. 2005; Transport and metabolism of citrate by Streptococcus mutans. J Bacteriol187:4451–4456
    [Google Scholar]
  25. Kuhnert W. L., Zheng G., Faustoferri R. C., Quivey R. G. Jr. 2004; The F-ATPase operon promoter of Streptococcus mutans is transcriptionally regulated in response to external pH. J Bacteriol186:8524–8528
    [Google Scholar]
  26. Lamy M. C., Zouine M., Fert J., Vergassola M., Couve E., Pellegrini E., Glaser P., Kunst F., Msadek T.. other authors 2004; CovS/CovR of group B streptococcus: a two-component global regulatory system involved in virulence. Mol Microbiol54:1250–1268
    [Google Scholar]
  27. Lau P. C., Sung C. K., Lee J. H., Morrison D. A., Cvitkovitch D. G.. 2002; PCR ligation mutagenesis in transformable streptococci: application and efficiency. J Microbiol Methods49:193–205
    [Google Scholar]
  28. Leblanc D. J., Lee L. N.. 1979; Rapid screening procedure for detection of plasmids in streptococci. J Bacteriol140:1112–1115
    [Google Scholar]
  29. Lemos J. A., Chen Y. Y., Burne R. A.. 2001; Genetic and physiologic analysis of the groE operon and role of the HrcA repressor in stress gene regulation and acid tolerance in Streptococcus mutans. J Bacteriol183:6074–6084
    [Google Scholar]
  30. Len A. C. L., Harty D. W. S., Jacques N. A.. 2004a; Stress responsive proteins are upregulated in Streptococcus mutans during acid tolerance. Microbiology150:1339–1351
    [Google Scholar]
  31. Len A. C. L., Harty D. W. S., Jacques N. A.. 2004b; Proteome analysis of Streptococcus mutans metabolic phenotype during acid tolerance. Microbiology150:1353–1366
    [Google Scholar]
  32. Li Y. H., Hanna M. N., Svensater G., Ellen R. P., Cvitkovitch D. G.. 2001a; Cell density modulates acid adaptation in Streptococcus mutans: implications for survival in biofilms. J Bacteriol183:6875–6884
    [Google Scholar]
  33. Li Y. H., Lau P. C., Lee J. H., Ellen R. P., Cvitkovitch D. G.. 2001b; Natural genetic transformation of Streptococcus mutans growing in biofilms. J Bacteriol183:897–908
    [Google Scholar]
  34. Li Y. H., Lau P. C., Tang N., Svensater G., Ellen R. P., Cvitkovitch D. G.. 2002; Novel two-component regulatory system involved in biofilm formation and acid resistance in Streptococcus mutans. J Bacteriol184:6333–6342
    [Google Scholar]
  35. Loesche W. J.. 1986; Role of Streptococcus mutans in human dental decay. Microbiol Rev50:353–380
    [Google Scholar]
  36. Macrina F. L., Tobian J. A., Jones K. R., Evans R. P., Clewell D. B.. 1982; A cloning vector able to replicate in Escherichia coli and Streptococcus sanguis. Gene19:345–353
    [Google Scholar]
  37. Mead P. S., Slutsker L., Dietz V., McCaig L. F., Bresee J. S., Shapiro C., Griffin P. M., Tauxe R. V.. 1999; Food-related illness and death in the United States. Emerg Infect Dis5:607–625
    [Google Scholar]
  38. Nascimento M. M., Lemos J. A., Abranches J., Goncalves R. B., Burne R. A.. 2004; Adaptive acid tolerance response of Streptococcus sobrinus. J Bacteriol186:6383–6390
    [Google Scholar]
  39. Paik S., Brown A., Munro C. L., Cornelissen C. N., Kitten T.. 2003; The sloABCR operon of Streptococcus mutans encodes an Mn and Fe transport system required for endocarditis virulence and its Mn-dependent repressor. J Bacteriol185:5967–5975
    [Google Scholar]
  40. Rolerson E., Swick A., Newlon L., Palmer C., Pan Y., Keeshan B., Spatafora G.. 2006; The SloR/Dlg metalloregulator modulates Streptococcus mutans virulence gene expression. J Bacteriol188:5033–5044
    [Google Scholar]
  41. Sambrook J., Fritsch E. F., Maniatis T.. 1989; Molecular Cloning: a Laboratory Manual, 2nd edn. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
  42. Sato Y., Yamamoto Y., Kizaki H.. 2000; Construction of region-specific partial duplication mutants (merodiploid mutants) to identify the regulatory gene for the glucan-binding protein C gene in vivo in Streptococcus mutans. FEMS Microbiol Lett186:187–191
    [Google Scholar]
  43. Senadheera M. D., Guggenheim B., Spatafora G. A., Yi-Chen C. H., Choi J., Hung D. C. I., Treglown J. S., Goodman S. D., Ellen R. P., Cvitkovitch D. G.. 2005; A VickRK signal transduction system in Streptococcus mutans affects gtfBCD, gbpB, and ftf expression, biofilm formation, and genetic competence development. J Bacteriol187:4064–4076
    [Google Scholar]
  44. Smith R. S.. 2001; Naturally Occurring Hazards. Article prepared for World Water Day March 22 2001; Geneva: World Health Organization;
    [Google Scholar]
  45. Szurmant H., Nelson K., Kim E.-J., Perego M., Hoch J. A.. 2005; YycH regulates the activity of the essential YycFG two component system in Bacillus subtilis. J Bacteriol187:5419–5426
    [Google Scholar]
  46. Tao X., Boyd J., Murphy J. R.. 1992; Specific binding of the diphtheria tox regulatory element DtxR to the tox operator requires divalent heavy metal ions and a 9-base-pair interrupted palindromic sequence. Proc Natl Acad Sci U S A89:5897–5901
    [Google Scholar]
  47. Teng F., Wang L., Singh K. V., Murray B. E., Weinstock G. M.. 2002; Involvement of PhoP-PhoS homologs in Enterococcus faecalis virulence. Infect Immun70:1991–1996
    [Google Scholar]
  48. US Department of Health and Human Services 2003; National Call to Action to Promote Oral Health. NIH publication number 03-5303 Rockville, MD: US Department of Health and Human Services, Public Health Service, National Institutes of Health, National Institute of Dental and Craniofacial Research;
    [Google Scholar]
  49. Wagner C., de Saizieu A., Schonfeld H.-J., Kamber M., Lange R., Thompson C. J., Page M. G.. 2002; Genetic analysis and functional characterization of the Streptococcus pneumoniae vic operon. Infect Immun70:6121–6128
    [Google Scholar]
  50. Workman C., Jensen L. J., Jarmer H., Berka R., Gautier L., Nielser H. B., Saxild H. H., Nielsen C., Brunak S., Knudsen S.. 2002; A new non-linear normalization method for reducing variability in DNA microarray experiments. Genome Biol3:research0048–0048.16
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.2007/012492-0
Loading
/content/journal/micro/10.1099/mic.0.2007/012492-0
Loading

Data & Media loading...

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error