1887

Abstract

Bacterial alkaline phosphatases (PhoA) hydrolyse phosphate-containing substrates to provide the preferred phosphorus source inorganic phosphate (P). does not contain a typical PhoA homologue but contains a phosphatase that is regulated by the two-component system PhosS/PhosR. Here we describe the characterization of the enzyme, its secretion pathway and its function in the bacterium's biology. Phosphatase assays showed that the enzyme utilizes exclusively phosphomonoesters as a substrate, requires Ca for its activity, and displays maximum activity at a pH of 10. Gene disruption revealed that it is the sole alkaline phosphatase in . The protein contained a twin-arginine motif (RR) at its N terminus, typical of substrates of the Tat secretion system. Substitution of the twin-arginine residues showed that they are essential for enzyme activity. genome analysis indicated the presence of four ubiquitously expressed Tat components that may form a functional Tat secretion system as well as 11 putative Tat substrates, including the alkaline phosphatase (PhoA) and the nitrate reductase NapA. Inactivation of caused defects in both PhoA and NapA activity as well as a reduction in bacterial growth that were all restored by complementation with an intact copy. The atypical overall features of the PhoA compared to PhoA support the existence in prokaryotes of a separate group of Tat-dependent alkaline phosphatases, classified as the PhoX family.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.2007/012120-0
2008-02-01
2019-11-12
Loading full text...

Full text loading...

/deliver/fulltext/micro/154/2/584.html?itemId=/content/journal/micro/10.1099/mic.0.2007/012120-0&mimeType=html&fmt=ahah

References

  1. Altekruse, S. F., Stern, N. J., Fields, P. I. & Swerdlow, D. L. ( 1999; ). Campylobacter jejuni – an emerging foodborne pathogen. Emerg Infect Dis 5, 28–35.[CrossRef]
    [Google Scholar]
  2. Angelini, S., Moreno, R., Gouffi, K., Santini, C., Yamagishi, A., Berenguer, J. & Wu, L. ( 2001; ). Export of Thermus thermophilus alkaline phosphatase via the twin-arginine translocation pathway in Escherichia coli. FEBS Lett 506, 103–107.[CrossRef]
    [Google Scholar]
  3. Bogsch, E. G., Sargent, F., Stanley, N. R., Berks, B. C., Robinson, C. & Palmer, T. ( 1998; ). An essential component of a novel bacterial protein export system with homologues in plastids and mitochondria. J Biol Chem 273, 18003–18006.[CrossRef]
    [Google Scholar]
  4. Diergaardt, S. M., Venter, S. N., Spreeth, A., Theron, J. & Brozel, V. S. ( 2004; ). The occurrence of campylobacters in water sources in South Africa. Water Res 38, 2589–2595.[CrossRef]
    [Google Scholar]
  5. Dilks, K., Rose, R. W., Hartmann, E. & Pohlschroder, M. ( 2003; ). Prokaryotic utilization of the twin-arginine translocation pathway: a genomic survey. J Bacteriol 185, 1478–1483.[CrossRef]
    [Google Scholar]
  6. Ding, Z. & Christie, P. J. ( 2003; ). Agrobacterium tumefaciens twin-arginine-dependent translocation is important for virulence, flagellation, and chemotaxis but not type IV secretion. J Bacteriol 185, 760–771.[CrossRef]
    [Google Scholar]
  7. Gundogdu, O., Bentley, S. D., Holden, M. T., Parkhill, J., Dorrell, N. & Wren, B. W. ( 2007; ). Re-annotation and re-analysis of the Campylobacter jejuni NCTC11168 genome sequence. BMC Genomics 8, 162 [CrossRef]
    [Google Scholar]
  8. Jongbloed, J. D., Martin, U., Antelmann, H., Hecker, M., Tjalsma, H., Venema, G., Bron, S., van Dijl, J. M. & Muller, J. ( 2000; ). TatC is a specificity determinant for protein secretion via the twin-arginine translocation pathway. J Biol Chem 275, 41350–41357.[CrossRef]
    [Google Scholar]
  9. Labigne-Roussel, A., Harel, J. & Tompkins, L. ( 1987; ). Gene transfer from Escherichia coli to Campylobacter species: development of shuttle vectors for genetic analysis of Campylobacter jejuni. J Bacteriol 169, 5320–5323.
    [Google Scholar]
  10. Lavander, M., Ericsson, S. K., Broms, J. E. & Forsberg, A. ( 2006; ). The twin arginine translocation system is essential for virulence of Yersinia pseudotuberculosis. Infect Immun 74, 1768–1776.[CrossRef]
    [Google Scholar]
  11. Leach, S., Harvey, P. & Wali, R. ( 1997; ). Changes with growth rate in the membrane lipid composition of and amino acid utilization by continuous cultures of Campylobacter jejuni. J Appl Microbiol 82, 631–640.[CrossRef]
    [Google Scholar]
  12. Lee, P. A., Tullman-Ercek, D. & Georgiou, G. ( 2006; ). The bacterial twin-arginine translocation pathway. Annu Rev Microbiol 60, 373–395.[CrossRef]
    [Google Scholar]
  13. MacKichan, J. K., Gaynor, E. C., Chang, C., Cawthraw, S., Newell, D. G., Miller, J. F. & Falkow, S. ( 2004; ). The Campylobacter jejuni dccRS two-component system is required for optimal in vivo colonization but is dispensable for in vitro growth. Mol Microbiol 54, 1269–1286.[CrossRef]
    [Google Scholar]
  14. Miller, W. G., Bates, A. H., Horn, S. T., Brandl, M. T., Wachtel, M. R. & Mandrell, R. E. ( 2000; ). Detection on surfaces and in Caco-2 cells of Campylobacter jejuni cells transformed with new gfp, yfp, and cfp marker plasmids. Appl Environ Microbiol 66, 5426–5436.[CrossRef]
    [Google Scholar]
  15. Monds, R. D., Newell, P. D., Schwartzman, J. A. & O'Toole, G. A. ( 2006; ). Conservation of the Pho regulon in Pseudomonas fluorescens Pf0-1. Appl Environ Microbiol 72, 1910–1924.[CrossRef]
    [Google Scholar]
  16. Myers, J. D. & Kelly, J. K. ( 2005; ). A sulphite respiration system in the chemoheterotrophic human pathogen Campylobacter jejuni. Microbiology 151, 233–242.[CrossRef]
    [Google Scholar]
  17. Nesmeyanova, M. A., Motlokh, O. B., Kolot, M. N. & Kulaev, I. S. ( 1981; ). Multiple forms of alkaline phosphatase from Escherichia coli cells with repressed and derepressed biosynthesis of the enzyme. J Bacteriol 146, 453–459.
    [Google Scholar]
  18. Palmer, T. & Berks, B. C. ( 2003; ). Moving folded proteins across the bacterial cell membrane. Microbiology 149, 547–556.[CrossRef]
    [Google Scholar]
  19. Palmer, S. R., Gully, P. R., White, J. M., Pearson, A. D., Suckling, W. G., Jones, D. M., Rawes, J. C. & Penner, J. L. ( 1983; ). Water-borne outbreak of campylobacter gastroenteritis. Lancet 1, 287–290.
    [Google Scholar]
  20. Parkhill, J., Wren, B. W., Mungall, K., Ketley, J. M., Churcher, C., Basham, D., Chillingworth, T., Davies, R. M., Feltwell, T. & other authors ( 2000; ). The genome sequence of the food-borne pathogen Campylobacter jejuni reveals hypervariable sequences. Nature 403, 665–668.[CrossRef]
    [Google Scholar]
  21. Pittman, M. S. & Kelly, D. J. ( 2005; ). Electron transport through nitrate and nitrite reductases in Campylobacter jejuni. Biochem Soc Trans 33, 190–192.[CrossRef]
    [Google Scholar]
  22. Rosef, O., Rettedal, G. & Lageide, L. ( 2001; ). Thermophilic campylobacters in surface water: a potential risk of campylobacteriosis. Int J Environ Health Res 11, 321–327.[CrossRef]
    [Google Scholar]
  23. Roy, N. K., Ghosh, R. K. & Das, J. ( 1982; ). Monomeric alkaline phosphatase of Vibrio cholerae. J Bacteriol 150, 1033–1039.
    [Google Scholar]
  24. Schneider, K. & Beck, C. F. ( 1986; ). Promoter-probe vectors for the analysis of divergently arranged promoters. Gene 42, 37–48.[CrossRef]
    [Google Scholar]
  25. Sellars, M. J., Hall, S. J. & Kelly, D. J. ( 2002; ). Growth of Campylobacter jejuni supported by respiration of fumarate, nitrate, nitrite, trimethylamine-N-oxide, or dimethyl sulfoxide requires oxygen. J Bacteriol 184, 4187–4196.[CrossRef]
    [Google Scholar]
  26. Stanley, N. R., Palmer, T. & Berks, B. C. ( 2000; ). The twin arginine consensus motif of Tat signal peptides is involved in Sec-independent protein targeting in Escherichia coli. J Biol Chem 275, 11591–11596.[CrossRef]
    [Google Scholar]
  27. Torriani, A. ( 1990; ). From cell membrane to nucleotides: the phosphate regulon in Escherichia coli. Bioessays 12, 371–376.[CrossRef]
    [Google Scholar]
  28. van Vliet, A. H., Wooldridge, K. G. & Ketley, J. M. ( 1998; ). Iron-responsive gene regulation in a Campylobacter jejuni fur mutant. J Bacteriol 180, 5291–5298.
    [Google Scholar]
  29. Wang, J., Stieglitz, K. A. & Kantrowitz, E. R. ( 2005; ). Metal specificity is correlated with two crucial active site residues in Escherichia coli alkaline phosphatase. Biochemistry 44, 8378–8386.[CrossRef]
    [Google Scholar]
  30. Wanner, B. L. ( 1996; ). Phosphorus assimilation and control of the phosphate regulon. In Escherichia coli and Salmonella: Cellular and Molecular Biology, pp. 1357–1381. Edited by F. C. Neidhardt and others. Washington, DC: American Society for Microbiology.
  31. Wassenaar, T. M., Fry, B. N. & van der Zeijst, B. A. ( 1993; ). Genetic manipulation of Campylobacter: evaluation of natural transformation and electro-transformation. Gene 132, 131–135.[CrossRef]
    [Google Scholar]
  32. Weiner, J. H., Bilous, P. T., Shaw, G. M., Lubitz, S. P., Frost, L., Thomas, G. H., Cole, J. A. & Turner, R. J. ( 1998; ). A novel and ubiquitous system for membrane targeting and secretion of cofactor-containing proteins. Cell 93, 93–101.[CrossRef]
    [Google Scholar]
  33. Wösten, M. M., Parker, C. T., van Mourik, A., Guilhabert, M. R., van Dijk, L. & van Putten, J. P. ( 2006; ). The Campylobacter jejuni PhosS/PhosR operon represents a non-classical phosphate-sensitive two-component system. Mol Microbiol 62, 278–291.[CrossRef]
    [Google Scholar]
  34. Wu, J. R., Shien, J. H., Shieh, H. K., Hu, C. C., Gong, S. R., Chen, L. Y. & Chang, P. C. ( 2007; ). Cloning of the gene and characterization of the enzymatic properties of the monomeric alkaline phosphatase (PhoX) from Pasteurella multocida strain X-73. FEMS Microbiol Lett 267, 113–120.[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.2007/012120-0
Loading
/content/journal/micro/10.1099/mic.0.2007/012120-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error