The voltage-gated Na channel NaBP co-localizes with methyl-accepting chemotaxis protein at cell poles of alkaliphilic OF4 Free

Abstract

NaBP, found in alkaliphilic OF4, is a member of the bacterial voltage-gated Na channel superfamily. The alkaliphile requires NaBP for normal chemotaxis responses and for optimal pH homeostasis during a shift to alkaline conditions at suboptimally low Na concentrations. We hypothesized that interaction of NaBP with one or more other proteins , specifically methyl-accepting chemotaxis proteins (MCPs), is involved in activation of the channel under the pH conditions that exist in the extremophile and could underpin its role in chemotaxis; MCPs transduce chemotactic signals and generally localize to cell poles of rod-shaped cells. Here, immunofluorescence microscopy and fluorescent protein fusion studies showed that an alkaliphile protein (designated McpX) that cross-reacts with antibodies raised against McpB co-localizes with NaBP at the cell poles of OF4. In a mutant in which NaBP-encoding is deleted, the content of McpX was close to the wild-type level but McpX was significantly delocalized. A mutant of OF4 was constructed in which expression was disrupted to assess whether this mutation impaired polar localization of McpX, as expected from studies in and , and, if so, whether NaBP would be similarly affected. Polar localization of both McpX and NaBP was decreased in the mutant. The results suggest interactions between McpX and NaBP that affect their co-localization. The inverse chemotaxis phenotype of mutants may result in part from MCP delocalization.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.2007/012070-0
2007-12-01
2024-03-29
Loading full text...

Full text loading...

/deliver/fulltext/micro/153/12/4027.html?itemId=/content/journal/micro/10.1099/mic.0.2007/012070-0&mimeType=html&fmt=ahah

References

  1. Baker M. D., Wolanin P. M., Stock J. B. 2006; Signal transduction in bacterial chemotaxis. Bioessays 28:9–22
    [Google Scholar]
  2. Bechhofer D. H., Wang W. 1998; Decay of ermC mRNA in a polynucleotide phosphorylase mutant of Bacillus subtilis . J Bacteriol 180:5968–5977
    [Google Scholar]
  3. Bekele-Arcuri Z., Matos M. F., Manganas L., Strassle B. W., Monaghan M. M., Rhodes K. J., Trimmer J. S. 1996; Generation and characterization of subtype-specific monoclonal antibodies to K+ channel alpha- and beta-subunit polypeptides. Neuropharmacology 35:851–865
    [Google Scholar]
  4. Blanchet J., Pilote S., Chahine M. 2007; Acidic residues on the voltage-sensor domain determine the activation of the NaChBac sodium channel. Biophys J 92:3513–3523
    [Google Scholar]
  5. Booth I. R., Edwards M. D., Miller S. 2003; Bacterial ion channels. Biochemistry 42:10045–10053
    [Google Scholar]
  6. Booth I. R., Edwards M. D., Murray E., Miller S. 2005; The role of bacterial channels in cell physiology. In Bacterial Ion Channels and Their Eukaryotic Homologs pp 291–312 Edited by Kubalski A., Marinac B. Washington, DC: American Society for Microbiology;
    [Google Scholar]
  7. Bray D., Levin M. D., Morton-Firth C. J. 1998; Receptor clustering as a cellular mechanism to control sensitivity. Nature 393:85–88
    [Google Scholar]
  8. Chahine M., Pilote S., Pouliot V., Takami H., Sato C. 2004; Role of arginine residues on the S4 segment of the Bacillus halodurans Na+ channel in voltage-sensing. J Membr Biol 201:9–24
    [Google Scholar]
  9. Clejan S., Guffanti A. A., Cohen M. A., Krulwich T. A. 1989; Mutation of Bacillus firmus OF4 to duramycin resistance results in substantial replacement of membrane lipid phosphatidylethanolamine by its plasmalogen form. J Bacteriol 171:1744–1746
    [Google Scholar]
  10. Duke T. A., Bray D. 1999; Heightened sensitivity of a lattice of membrane receptors. Proc Natl Acad Sci U S A 96:10104–10108
    [Google Scholar]
  11. Fujinami S., Terahara N., Lee S., Ito M. 2007; Na+ and flagella-dependent swimming of alkaliphilic Bacillus pseudofirmus OF4: a basis for poor motility at low pH and enhancement in viscous media in an “up-motile” variant. Arch Microbiol 187:239–247
    [Google Scholar]
  12. Gegner J. A., Graham D. R., Roth A. F., Dahlquist F. W. 1992; Assembly of an MCP receptor, CheW, and kinase CheA complex in the bacterial chemotaxis signal transduction pathway. Cell 70:975–982
    [Google Scholar]
  13. Gestwicki J. E., Lamanna A. C., Harshey R. M., McCarter L. L., Kiessling L. L., Adler J. 2000; Evolutionary conservation of methyl-accepting chemotaxis protein location in Bacteria and Archaea. J Bacteriol 182:6499–6502
    [Google Scholar]
  14. Goldberg E. B., Arbel T., Chen J., Karpel R., Mackie G. A., Schuldiner S., Padan E. 1987; Characterization of a Na+/H+ antiporter gene of Escherichia coli . Proc Natl Acad Sci U S A 84:2615–2619
    [Google Scholar]
  15. Goulbourne E. A. J., Greenberg E. P. 1983; Inhibition of Spirochaeta aurantia chemotaxis by neurotoxins. J Bacteriol 155:1443–1445
    [Google Scholar]
  16. Hanlon D. W., Ordal G. W. 1994; Cloning and characterization of genes encoding methyl-accepting chemotaxis proteins in Bacillus subtilis . J Biol Chem 269:14038–14046
    [Google Scholar]
  17. Hiraga S., Ichinose C., Niki H., Yamazoe M. 1998; Cell cycle-dependent duplication and bidirectional migration of SeqA-associated DNA–protein complexes in E. coli . Mol Cell 1:381–387
    [Google Scholar]
  18. Horinouchi S., Weisblum B. 1982; Nucleotide sequence and functional map of pC194, a plasmid that specifies inducible chloramphenicol resistance. J Bacteriol 150:815–825
    [Google Scholar]
  19. Horton R. M. 1997; In vitro recombination and mutagenesis of DNA. SOEing together tailor-made genes. Methods Mol Biol 67:141–149
    [Google Scholar]
  20. Irieda H., Homma M., Homma M., Kawagishi I. 2006; Control of chemotactic signal gain via modulation of a pre-formed receptor array. J Biol Chem 281:23880–23886
    [Google Scholar]
  21. Ito M., Guffanti A. A., Zemsky J., Ivey D. M., Krulwich T. A. 1997; Role of the nhaC -encoded Na+/H+ antiporter of alkaliphilic Bacillus firmus OF4. J Bacteriol 179:3851–3857
    [Google Scholar]
  22. Ito M., Hicks D. B., Henkin T. M., Guffanti A. A., Powers B., Zvi L., Uematsu K., Krulwich T. A. 2004a; MotPS is the stator-force generator for motility of alkaliphilic Bacillus and its homologue is a second functional Mot in Bacillus subtilis . Mol Microbiol 53:1035–1049
    [Google Scholar]
  23. Ito M., Xu H., Guffanti A. A., Wei Y., Zvi L., Clapham D. E., Krulwich T. A. 2004b; The voltage-gated Na+ channel NavBP has a role in motility, chemotaxis, and pH homeostasis of an alkaliphilic Bacillus . Proc Natl Acad Sci U S A 101:10566–10571
    [Google Scholar]
  24. Kentner D., Thiem S., Hildenbeutel M., Sourjik V. 2006; Determinants of chemoreceptor cluster formation in Escherichia coli . Mol Microbiol 61:407–417
    [Google Scholar]
  25. Kirby J. R., Niewold T. B., Maloy S., Ordal G. W. 2000; CheB is required for behavioural responses to negative stimuli during chemotaxis in Bacillus subtilis . Mol Microbiol 35:44–57
    [Google Scholar]
  26. Koishi R., Xu H., Ren D., Navarro B., Spiller B. W., Shi Q., Clapham D. E. 2004; A superfamily of voltage-gated sodium channels in bacteria. J Biol Chem 279:9532–9538
    [Google Scholar]
  27. Krulwich T. A. 1995; Alkaliphiles: ‘basic’ molecular problems of pH tolerance and bioenergetics. Mol Microbiol 15:403–410
    [Google Scholar]
  28. Krulwich T. A., Ito M., Guffanti A. A. 2001; The Na+-dependence of alkaliphily in Bacillus . Biochim Biophys Acta 1505158–168
    [Google Scholar]
  29. Krulwich T. A., Hicks D. B., Swartz T. H., Ito M. 2007; Bioenergetic adaptations that support alkaliphily. In Physiology and Biochemistry of Extremophiles pp 257–270 Edited by Gerday C., Glansdorff N. Washington, DC: American Society for Microbiology;
    [Google Scholar]
  30. Kung C., Blount P. 2004; Channels in microbes: so many holes to fill. Mol Microbiol 53:373–380
    [Google Scholar]
  31. Kuzmenkin A., Bezanilla F., Correa A. M. 2004; Gating of the bacterial sodium channel, NaChBac: voltage-dependent charge movement and gating currents. J Gen Physiol 124:349–356
    [Google Scholar]
  32. Lamanna A. C., Ordal G. W., Kiessling L. L. 2005; Large increases in attractant concentration disrupt the polar localization of bacterial chemoreceptors. Mol Microbiol 57:774–785
    [Google Scholar]
  33. Levitan I. B. 1999; Modulation of ion channels by protein phosphorylation. How the brain works. Adv Second Messenger Phosphoprotein Res 33:3–22
    [Google Scholar]
  34. Liu Y., Levit M., Lurz R., Surette M. G., Stock J. B. 1997; Receptor-mediated protein kinase activation and the mechanism of transmembrane signaling in bacterial chemotaxis. EMBO J 16:7231–7240
    [Google Scholar]
  35. Lowry O. H., Rosebrough N. J., Farr A. L., Randall R. J. 1951; Protein measurement with the Folin phenol reagent. J Biol Chem 193:265–275
    [Google Scholar]
  36. Lybarger S. R., Maddock J. R. 1999; Clustering of the chemoreceptor complex in Escherichia coli is independent of the methyltransferase CheR and the methylesterase CheB. J Bacteriol 181:5527–5529
    [Google Scholar]
  37. Lybarger S. R., Maddock J. R. 2001; Polarity in action: asymmetric protein localization in bacteria. J Bacteriol 183:3261–3267
    [Google Scholar]
  38. Maddock J. R., Shapiro L. 1993; Polar location of the chemoreceptor complex in the Escherichia coli cell. Science 259:1717–1723
    [Google Scholar]
  39. Padan E., Bibi E., Ito M., Krulwich T. A. 2005; Alkaline pH homeostasis in bacteria: new insights. Biochim Biophys Acta 171767–88
    [Google Scholar]
  40. Park K. S., Mohapatra D. P., Misonou H., Trimmer J. S. 2006; Graded regulation of the Kv2.1 potassium channel by variable phosphorylation. Science 313:976–979
    [Google Scholar]
  41. Pavlov E., Bladen C., Winkfein R., Diao C., Dhaliwal P., French R. J. 2005; The pore, not cytoplasmic domains, underlies inactivation in a prokaryotic sodium channel. Biophys J 89:232–242
    [Google Scholar]
  42. Rao C. V., Kirby J. R., Arkin A. P. 2004; Design and diversity in bacterial chemotaxis: a comparative study in Escherichia coli and Bacillus subtilis . PLoS Biol 2:E49
    [Google Scholar]
  43. Ren D., Navarro B., Xu H., Yue L., Shi Q., Clapham D. E. 2001; A prokaryotic voltage-gated sodium channel. Science 294:2372–2375
    [Google Scholar]
  44. Richardson J., Blunck R., Ge P., Selvin P. R., Bezanilla F., Papazian D. M., Correa A. M. 2006; Distance measurements reveal a common topology of prokaryotic voltage-gated ion channels in the lipid bilayer. Proc Natl Acad Sci U S A 103:15865–15870
    [Google Scholar]
  45. Schagger H., von Jagow G. 1987; Tricine-sodium dodecyl sulfate-polyacrylamide gel electrophoresis for the separation of proteins in the range from 1 to 100 kDa. Anal Biochem 166:368–379
    [Google Scholar]
  46. Shapiro L., McAdams H. H., Losick R. 2002; Generating and exploiting polarity in bacteria. Science 298:1942–1946
    [Google Scholar]
  47. Shiomi D., Yoshimoto M., Homma M., Kawagishi I. 2006; Helical distribution of the bacterial chemoreceptor via colocalization with the Sec protein translocation machinery. Mol Microbiol 60:894–906
    [Google Scholar]
  48. Skidmore J. M., Ellefson D. D., McNamara B. P., Couto M. M., Wolfe A. J., Maddock J. R. 2000; Polar clustering of the chemoreceptor complex in Escherichia coli occurs in the absence of complete CheA function. J Bacteriol 182:967–973
    [Google Scholar]
  49. Sourjik V., Berg H. C. 2000; Localization of components of the chemotaxis machinery of Escherichia coli using fluorescent protein fusions. Mol Microbiol 37:740–751
    [Google Scholar]
  50. Sturr M. G., Guffanti A. A., Krulwich T. A. 1994; Growth and bioenergetics of alkaliphilic Bacillus firmus OF4 in continuous culture at high pH. J Bacteriol 176:3111–3116
    [Google Scholar]
  51. Szurmant H., Ordal G. W. 2004; Diversity in chemotaxis mechanisms among the bacteria and archaea. Microbiol Mol Biol Rev 68:301–319
    [Google Scholar]
  52. Tisa L. S., Olivera B. M., Adler J. 1993; Inhibition of Escherichia coli chemotaxis by omega-conotoxin, a calcium ion channel blocker. J Bacteriol 175:1235–1238
    [Google Scholar]
  53. Tisa L. S., Sekelsky J. J., Adler J. 2000; Effects of organic antagonists of Ca2+, Na+, and K+ on chemotaxis and motility of Escherichia coli . J Bacteriol 182:4856–4861
    [Google Scholar]
  54. Trimmer J. S., Trowbridge I. S., Vacquier V. D. 1985; Monoclonal antibody to a membrane glycoprotein inhibits the acrosome reaction and associated Ca2+ and H+ fluxes of sea urchin sperm. Cell 40:697–703
    [Google Scholar]
  55. Wadhams G. H., Armitage J. P. 2004; Making sense of it all: bacterial chemotaxis. Nat Rev Mol Cell Biol 5:1024–1037
    [Google Scholar]
  56. Weis R. M. 2006; Inch by inch, row by row. Nat Struct Mol Biol 13:382–384
    [Google Scholar]
  57. Zhao Y., Scheuer T., Catterall W. A. 2004; Reversed voltage-dependent gating of a bacterial sodium channel with proline substitutions in the S6 transmembrane segment. Proc Natl Acad Sci U S A 101:17873–17878
    [Google Scholar]
  58. Zhulin I. B. 2001; The superfamily of chemotaxis transducers: from physiology to genomics and back. Adv Microb Physiol 45:157–198
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.2007/012070-0
Loading
/content/journal/micro/10.1099/mic.0.2007/012070-0
Loading

Data & Media loading...

Most cited Most Cited RSS feed