1887

Abstract

Temperature serves as a cue to regulate gene expression in and other bacteria. Using DNA microarrays, we identified 297 genes whose expression is increased at 23 °C compared to 37 °C in K-12. Of these genes, 122 are RpoS-controlled, confirming genome-wide the model that low temperature serves as a primary cue to trigger the general stress response. Several genes expressed at 23 °C overlap with the cold-shock response, suggesting that strategies used to adapt to sudden shifts in temperature also mediate long-term growth at 23 °C. Another category of genes more highly expressed at 23 °C are associated with biofilm development, implicating temperature as an important cue influencing this developmental pathway. In a candidate set of genes tested, the biofilm genes (, , , , , / and cold-shock genes (, / were found to be RpoS- and DsrA-dependent for their transcription at 23 °C. In contrast, transcription of three genes (, and ) was either partially or fully independent of these regulators, signifying there is an alternative thermoregulatory mechanism(s) that increases gene expression at 23 °C. Increased expression at 23 °C compared to 37 °C is retained in various media tested for most of the genes, supporting the relative importance of this cue in adaptation to changing environments. Both the RpoS-dependent gene and the RpoS-independent gene demonstrated increased expression levels within 1 h after a shift from 37 to 23 °C, indicating a rapid response to this environmental cue. Despite changes in gene expression for many RpoS-dependent genes, experiments assessing growth rate at 23 °C and viability at 4 °C did not demonstrate significant impairment in  : : Tn or  : :  mutant strains in comparison to the wild-type strain. Biofilm formation was favoured at low temperature and is moderately impaired in both the  : : Tn and  : :  mutants at 23 °C, suggesting genes controlled by these regulators play a role necessary for optimal biofilm formation at 23 °C. Taken together, our data demonstrate that a large number of genes are increased in expression at 23 °C to globally respond to this environmental change and that at least two thermoregulatory pathways are involved in co-ordinating this response – the RpoS/DsrA pathway and an alternative thermoregulatory pathway, independent of these regulators.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.2007/012021-0
2008-01-01
2019-11-13
Loading full text...

Full text loading...

/deliver/fulltext/micro/154/1/148.html?itemId=/content/journal/micro/10.1099/mic.0.2007/012021-0&mimeType=html&fmt=ahah

References

  1. Adams, J. L. & McLean, R. J. ( 1999; ). Impact of rpoS deletion on Escherichia coli biofilms. Appl Environ Microbiol 65, 4285–4287.
    [Google Scholar]
  2. Berney, M., Weilenmann, H. U., Ihssen, J., Bassin, C. & Egli, T. ( 2006; ). Specific growth rate determines the sensitivity of Escherichia coli to thermal, UVA, and solar disinfection. Appl Environ Microbiol 72, 2586–2593.[CrossRef]
    [Google Scholar]
  3. Braaten, B. A., Nou, X., Kaltenbach, L. S. & Low, D. A. ( 1994; ). Methylation patterns in pap regulatory DNA control pyelonephritis-associated pili phase variation in E. coli. Cell 76, 577–588.[CrossRef]
    [Google Scholar]
  4. Brombacher, E., Dorel, C., Zehnder, A. J. & Landini, P. ( 2003; ). The curli biosynthesis regulator CsgD co-ordinates the expression of both positive and negative determinants for biofilm formation in Escherichia coli. Microbiology 149, 2847–2857.[CrossRef]
    [Google Scholar]
  5. Brooks, C. S., Hefty, P. S., Jolliff, S. E. & Akins, D. R. ( 2003; ). Global analysis of Borrelia burgdorferi genes regulated by mammalian host-specific signals. Infect Immun 71, 3371–3383.[CrossRef]
    [Google Scholar]
  6. Brown, P. K., Dozois, C. M., Nickerson, C. A., Zuppardo, A., Terlonge, J. & Curtiss, R., III ( 2001; ). MlrA, a novel regulator of curli (AgF) and extracellular matrix synthesis by Escherichia coli and Salmonella enterica serovar Typhimurium. Mol Microbiol 41, 349–363.[CrossRef]
    [Google Scholar]
  7. Casadaban, M. J. ( 1976; ). Transposition and fusion of the lac genes to selected promoters in E. coli using bacteriophage lambda and Mu. J Mol Biol 104, 541–555.[CrossRef]
    [Google Scholar]
  8. Checroun, C. & Gutierrez, C. ( 2004; ). σ S-dependent regulation of yehZYXW, which encodes a putative osmoprotectant ABC transporter of Escherichia coli. FEMS Microbiol Lett 236, 221–226.
    [Google Scholar]
  9. Cheville, A. M., Arnold, K. W., Buchrieser, C., Cheng, C. M. & Kaspar, C. W. ( 1996; ). rpoS regulation of acid, heat, and salt tolerance in Escherichia coli O157:H7. Appl Environ Microbiol 62, 1822–1824.
    [Google Scholar]
  10. Conter, A., Menchon, C. & Gutierrez, C. ( 1997; ). Role of DNA supercoiling and rpoS sigma factor in the osmotic and growth phase-dependent induction of the gene osmE of Escherichia coli K12. J Mol Biol 273, 75–83.[CrossRef]
    [Google Scholar]
  11. Cookson, A. L., Cooley, W. A. & Woodward, M. J. ( 2002; ). The role of type 1 and curli fimbriae of Shiga toxin-producing Escherichia coli in adherence to abiotic surfaces. Int J Med Microbiol 292, 195–205.[CrossRef]
    [Google Scholar]
  12. Corona-Izquierdo, F. P. & Membrillo-Hernandez, J. ( 2002; ). A mutation in rpoS enhances biofilm formation in Escherichia coli during exponential phase of growth. FEMS Microbiol Lett 211, 105–110.[CrossRef]
    [Google Scholar]
  13. Cotter, P. A. & Miller, J. F. ( 1998; ). In vivo and ex vivo regulation of bacterial virulence gene expression. Curr Opin Microbiol 1, 17–26.[CrossRef]
    [Google Scholar]
  14. Domka, J., Lee, J. & Wood, T. K. ( 2006; ). YliH (BssR) and YceP (BssS) regulate Escherichia coli K-12 biofilm formation by influencing cell signaling. Appl Environ Microbiol 72, 2449–2459.[CrossRef]
    [Google Scholar]
  15. Ferenci, T. ( 2003; ). What is driving the acquisition of mutS and rpoS polymorphisms in Escherichia coli? Trends Microbiol 11, 457–461.[CrossRef]
    [Google Scholar]
  16. Garcia, B., Latasa, C., Solano, C., Garcia-del Portillo, F., Gamazo, C. & Lasa, I. ( 2004; ). Role of the GGDEF protein family in Salmonella cellulose biosynthesis and biofilm formation. Mol Microbiol 54, 264–277.[CrossRef]
    [Google Scholar]
  17. Goller, C., Wang, X., Itoh, Y. & Romeo, T. ( 2006; ). The cation-responsive protein NhaR of Escherichia coli activates pgaABCD transcription, required for production of the biofilm adhesin poly-β-1,6-N-acetyl-d-glucosamine. J Bacteriol 188, 8022–8032.[CrossRef]
    [Google Scholar]
  18. Grogan, D. W. & Cronan, J. E., Jr ( 1984; ). Genetic characterization of the Escherichia coli cyclopropane fatty acid (cfa) locus and neighboring loci. Mol Gen Genet 196, 367–372.[CrossRef]
    [Google Scholar]
  19. Grogan, D. W. & Cronan, J. E., Jr ( 1997; ). Cyclopropane ring formation in membrane lipids of bacteria. Microbiol Mol Biol Rev 61, 429–441.
    [Google Scholar]
  20. Gross, C. ( 1996; ). Function and regulation of the heat shock proteins. In Escherichia coli and Salmonella typhimurium Cellular and Molecular Biology, pp. 1382–1399. Edited by F. C. Neihardt, R. C. Curtiss III, J. L. Ingraham & others. Washington, DC: American Society for Microbiology.
  21. Gualerzi, C. O., Giuliodori, A. M. & Pon, C. L. ( 2003; ). Transcriptional and post-transcriptional control of cold-shock genes. J Mol Biol 331, 527–539.[CrossRef]
    [Google Scholar]
  22. Han, Y., Zhou, D., Pang, X., Song, Y., Zhang, L., Bao, J., Tong, Z., Wang, J., Guo, Z. & other authors ( 2004; ). Microarray analysis of temperature-induced transcriptome of Yersinia pestis. Microbiol Immunol 48, 791–805.[CrossRef]
    [Google Scholar]
  23. Hashimoto, W., Suzuki, H., Yamamoto, K. & Kumagai, H. ( 1997; ). Analysis of low temperature inducible mechanism of gamma-glutamyltranspeptidase of Escherichia coli K-12. Biosci Biotechnol Biochem 61, 34–39.[CrossRef]
    [Google Scholar]
  24. Hirakawa, H., Inazumi, Y., Senda, Y., Kobayashi, A., Hirata, T., Nishino, K. & Yamaguchi, A. ( 2006; ). N-Acetyl-d-glucosamine induces the expression of multidrug exporter genes, mdtEF, via catabolite activation in Escherichia coli. J Bacteriol 188, 5851–5858.[CrossRef]
    [Google Scholar]
  25. Kandror, O., DeLeon, A. & Goldberg, A. L. ( 2002; ). Trehalose synthesis is induced upon exposure of Escherichia coli to cold and is essential for viability at low temperatures. Proc Natl Acad Sci U S A 99, 9727–9732.[CrossRef]
    [Google Scholar]
  26. Lacour, S. & Landini, P. ( 2004; ). SigmaS-dependent gene expression at the onset of stationary phase in Escherichia coli: function of sigmaS-dependent genes and identification of their promoter sequences. J Bacteriol 186, 7186–7195.[CrossRef]
    [Google Scholar]
  27. Lange, R. & Hengge-Aronis, R. ( 1991; ). Identification of a central regulator of stationary-phase gene expression in Escherichia coli. Mol Microbiol 5, 49–59.[CrossRef]
    [Google Scholar]
  28. Lease, R. A. & Belfort, M. ( 2000; ). Riboregulation by DsrA RNA: trans-actions for global economy. Mol Microbiol 38, 667–672.[CrossRef]
    [Google Scholar]
  29. Livak, K. J. & Schmittgen, T. D. ( 2001; ). Analysis of relative gene expression data using real-time quantitative PCR and the <-- INSERT PICT -->method. Methods 25, 402–408.[CrossRef]
    [Google Scholar]
  30. Mahan, M. J., Slauch, J. M. & Mekalanos, J. J. ( 1996; ). Environmental regulation of virulence gene expression in Escherichia, Salmonella, and Shigella spp. In Escherichia coli and Salmonella typhimurium: Cellular and Molecular Biology, pp. 2803–2816. Edited by F. C. Neidhardt, R. Curtiss III, J. L. Ingraham & others. Washington, DC: American Society for Microbiology.
  31. Marschall, C. & Hengge-Aronis, R. ( 1995; ). Regulatory characteristics and promoter analysis of csiE, a stationary phase-inducible gene under the control of sigma S and the cAMP-CRP complex in Escherichia coli. Mol Microbiol 18, 175–184.[CrossRef]
    [Google Scholar]
  32. McMeechan, A., Roberts, M., Cogan, T. A., Jorgensen, F., Stevenson, A., Lewis, C., Rowley, G. & Humphrey, T. J. ( 2007; ). Role of the alternative sigma factors sigmaE and sigmaS in survival of Salmonella enterica serovar Typhimurium during starvation, refrigeration and osmotic shock. Microbiology 153, 263–269.[CrossRef]
    [Google Scholar]
  33. Mekalanos, J. J. ( 1992; ). Environmental signals controlling expression of virulence determinants in bacteria. J Bacteriol 174, 1–7.
    [Google Scholar]
  34. Mellies, J., Wise, A. & Villarejo, M. ( 1995; ). Two different Escherichia coli proP promoters respond to osmotic and growth phase signals. J Bacteriol 177, 144–151.
    [Google Scholar]
  35. Metzner, M., Germer, J. & Hengge, R. ( 2004; ). Multiple stress signal integration in the regulation of the complex sigma S-dependent csiD-ygaF-gabDTP operon in Escherichia coli. Mol Microbiol 51, 799–811.
    [Google Scholar]
  36. Miller, J. H. ( 1972; ). Experiments in Molecular Genetics. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory.
  37. Motin, V. L., Georgescu, A. M., Fitch, J. P., Gu, P. P., Nelson, D. O., Mabery, S. L., Garnham, J. B., Sokhansanj, B. A., Ott, L. L. & other authors ( 2004; ). Temporal global changes in gene expression during temperature transition in Yersinia pestis. J Bacteriol 186, 6298–6305.[CrossRef]
    [Google Scholar]
  38. Muffler, A., Barth, M., Marschall, C. & Hengge-Aronis, R. ( 1997; ). Heat shock regulation of sigmaS turnover: a role for DnaK and relationship between stress responses mediated by sigmaS and sigma32 in Escherichia coli. J Bacteriol 179, 445–452.
    [Google Scholar]
  39. O'Toole, G. A. & Kolter, R. ( 1998; ). Initiation of biofilm formation in Pseudomonas fluorescens WCS365 proceeds via multiple, convergent signalling pathways: a genetic analysis. Mol Microbiol 28, 449–461.[CrossRef]
    [Google Scholar]
  40. Olsen, A., Arnqvist, A., Hammar, M. & Normark, S. ( 1993a; ). Environmental regulation of curli production in Escherichia coli. Infect Agents Dis 2, 272–274.
    [Google Scholar]
  41. Olsen, A., Arnqvist, A., Hammar, M., Sukupolvi, S. & Normark, S. ( 1993b; ). The RpoS sigma factor relieves H-NS-mediated transcriptional repression of csgA, the subunit gene of fibronectin-binding curli in Escherichia coli. Mol Microbiol 7, 523–536.[CrossRef]
    [Google Scholar]
  42. Otto, K. & Hermansson, M. ( 2004; ). Inactivation of ompX causes increased interactions of type 1 fimbriated Escherichia coli with abiotic surfaces. J Bacteriol 186, 226–234.[CrossRef]
    [Google Scholar]
  43. Peters, J. E., Thate, T. E. & Craig, N. L. ( 2003; ). Definition of the Escherichia coli MC4100 genome by use of a DNA array. J Bacteriol 185, 2017–2021.[CrossRef]
    [Google Scholar]
  44. Phadtare, S. & Inouye, M. ( 2004; ). Genome-wide transcriptional analysis of the cold shock response in wild-type and cold-sensitive, quadruple-csp-deletion strains of Escherichia coli. J Bacteriol 186, 7007–7014.[CrossRef]
    [Google Scholar]
  45. Phadtare, S., Yamanaka, K. & Inouye, M. ( 2000; ). The cold shock response. In Bacterial Stress Responses, pp. 33–46. Edited by G. Storz & R. Hengge-Aronis. Washington, DC: American Society for Microbiology.
  46. Polissi, A., De Laurentis, W., Zangrossi, S., Briani, F., Longhi, V., Pesole, G. & Deho, G. ( 2003; ). Changes in Escherichia coli transcriptome during acclimatization at low temperature. Res Microbiol 154, 573–580.[CrossRef]
    [Google Scholar]
  47. Prigent-Combaret, C., Brombacher, E., Vidal, O., Ambert, A., Lejeune, P., Landini, P. & Dorel, C. ( 2001; ). Complex regulatory network controls initial adhesion and biofilm formation in Escherichia coli via regulation of the csgD gene. J Bacteriol 183, 7213–7223.[CrossRef]
    [Google Scholar]
  48. Rajkumari, K. & Gowrishankar, J. ( 2001; ). In vivo expression from the RpoS-dependent P1 promoter of the osmotically regulated proU operon in Escherichia coli and Salmonella enterica serovar Typhimurium: activation by rho and hns mutations and by cold stress. J Bacteriol 183, 6543–6550.[CrossRef]
    [Google Scholar]
  49. Rajkumari, K. & Gowrishankar, J. ( 2002; ). An N-terminally truncated RpoS (σ S) protein in Escherichia coli is active in vivo and exhibits normal environmental regulation even in the absence of rpoS transcriptional and translational control signals. J Bacteriol 184, 3167–3175.[CrossRef]
    [Google Scholar]
  50. Ren, D., Bedzyk, L. A., Thomas, S. M., Ye, R. W. & Wood, T. K. ( 2004; ). Gene expression in Escherichia coli biofilms. Appl Microbiol Biotechnol 64, 515–524.[CrossRef]
    [Google Scholar]
  51. Repoila, F., Majdalani, N. & Gottesman, S. ( 2003; ). Small non-coding RNAs, co-ordinators of adaptation processes in Escherichia coli: the RpoS paradigm. Mol Microbiol 48, 855–861.[CrossRef]
    [Google Scholar]
  52. Revel, A. T., Talaat, A. M. & Norgard, M. V. ( 2002; ). DNA microarray analysis of differential gene expression in Borrelia burgdorferi, the Lyme disease spirochete. Proc Natl Acad Sci U S A 99, 1562–1567.[CrossRef]
    [Google Scholar]
  53. Romling, U., Bian, Z., Hammar, M., Sierralta, W. D. & Normark, S. ( 1998; ). Curli fibers are highly conserved between Salmonella typhimurium and Escherichia coli with respect to operon structure and regulation. J Bacteriol 180, 722–731.
    [Google Scholar]
  54. Romling, U., Rohde, M., Olsen, A., Normark, S. & Reinkoster, J. ( 2000; ). AgfD, the checkpoint of multicellular and aggregative behaviour in Salmonella typhimurium regulates at least two independent pathways. Mol Microbiol 36, 10–23.[CrossRef]
    [Google Scholar]
  55. Santos, J. M., Freire, P., Vicente, M. & Arraiano, C. M. ( 1999; ). The stationary-phase morphogene bolA from Escherichia coli is induced by stress during early stages of growth. Mol Microbiol 32, 789–798.[CrossRef]
    [Google Scholar]
  56. Silhavy, T. J., Berman, M. L. & Enquist, L. W. ( 1984; ). Experiments with Gene Fusions. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory.
  57. Sledjeski, D. D., Gupta, A. & Gottesman, S. ( 1996; ). The small RNA, DsrA, is essential for the low temperature expression of RpoS during exponential growth in Escherichia coli. EMBO J 15, 3993–4000.
    [Google Scholar]
  58. Smoot, L. M., Smoot, J. C., Graham, M. R., Somerville, G. A., Sturdevant, D. E., Migliaccio, C. A., Sylva, G. L. & Musser, J. M. ( 2001; ). Global differential gene expression in response to growth temperature alteration in group A Streptococcus. Proc Natl Acad Sci U S A 98, 10416–10421.[CrossRef]
    [Google Scholar]
  59. Soupene, E., King, N., Lee, H. & Kustu, S. ( 2002; ). Aquaporin Z of Escherichia coli: reassessment of its regulation and physiological role. J Bacteriol 184, 4304–4307.[CrossRef]
    [Google Scholar]
  60. Stokes, N. R., Murray, H. D., Subramaniam, C., Gourse, R. L., Louis, P., Bartlett, W., Miller, S. & Booth, I. R. ( 2003; ). A role for mechanosensitive channels in survival of stationary phase: regulation of channel expression by RpoS. Proc Natl Acad Sci U S A 100, 15959–15964.[CrossRef]
    [Google Scholar]
  61. Tatusov, R. L., Koonin, E. V. & Lipman, D. J. ( 1997; ). A genomic perspective on protein families. Science 278, 631–637.[CrossRef]
    [Google Scholar]
  62. Toesca, I., Perard, C., Bouvier, J., Gutierrez, C. & Conter, A. ( 2001; ). The transcriptional activator NhaR is responsible for the osmotic induction of osmC(p1), a promoter of the stress-inducible gene osmC in Escherichia coli. Microbiology 147, 2795–2803.
    [Google Scholar]
  63. Tusher, V. G., Tibshirani, R. & Chu, G. ( 2001; ). Significance analysis of microarrays applied to the ionizing radiation response. Proc Natl Acad Sci U S A 98, 5116–5121.[CrossRef]
    [Google Scholar]
  64. Vidal, O., Longin, R., Prigent-Combaret, C., Dorel, C., Hooreman, M. & Lejeune, P. ( 1998; ). Isolation of an Escherichia coli K-12 mutant strain able to form biofilms on inert surfaces: involvement of a new ompR allele that increases curli expression. J Bacteriol 180, 2442–2449.
    [Google Scholar]
  65. Vieira, H. L., Freire, P. & Arraiano, C. M. ( 2004; ). Effect of Escherichia coli morphogene bolA on biofilms. Appl Environ Microbiol 70, 5682–5684.[CrossRef]
    [Google Scholar]
  66. Wang, N., Yamanaka, K. & Inouye, M. ( 1999; ). CspI, the ninth member of the CspA family of Escherichia coli, is induced upon cold shock. J Bacteriol 181, 1603–1609.
    [Google Scholar]
  67. Weber, H., Polen, T., Heuveling, J., Wendisch, V. F. & Hengge, R. ( 2005; ). Genome-wide analysis of the general stress response network in Escherichia coli: sigmaS-dependent genes, promoters, and sigma factor selectivity. J Bacteriol 187, 1591–1603.[CrossRef]
    [Google Scholar]
  68. White-Ziegler, C. A., Villapakkam, A., Ronaszeki, K. & Young, S. D. ( 2000; ). H-NS controls pap and daa fimbrial transcription Escherichia coli in response to multiple environmental cues. J Bacteriol 182, 6391–6400.[CrossRef]
    [Google Scholar]
  69. White-Ziegler, C. A., Malhowski, A. J. & Young, S. ( 2007; ). Human body temperature (3 °C) increases the expression of iron, carbohydrate, and amino acid utilization genes in Escherichia coli K-12. J Bacteriol 189, 5429–5440.[CrossRef]
    [Google Scholar]
  70. Xu, J. & Johnson, R. C. ( 1995; ). Identification of genes negatively regulated by Fis: Fis and RpoS comodulate growth-phase-dependent gene expression in Escherichia coli. J Bacteriol 177, 938–947.
    [Google Scholar]
  71. Yura, T., Kanemori, M. & Morita, M. T. ( 2000; ). The heat shock response: regulation and function. In Bacterial Stress Responses, pp. 3–18. Edited by G. Storz & R. Hengge-Aronis. Washington, DC: American Society for Microbiology.
  72. Zhao, Y., Hindorff, L. A., Chuang, A., Monroe-Augustus, M., Lyristis, M., Harrison, M. L., Rudolph, F. B. & Bennett, G. N. ( 2003; ). Expression of a cloned cyclopropane fatty acid synthase gene reduces solvent formation in Clostridium acetobutylicum ATCC 824. Appl Environ Microbiol 69, 2831–2841.[CrossRef]
    [Google Scholar]
  73. Zogaj, X., Nimtz, M., Rohde, M., Bokranz, W. & Romling, U. ( 2001; ). The multicellular morphotypes of Salmonella typhimurium and Escherichia coli produce cellulose as the second component of the extracellular matrix. Mol Microbiol 39, 1452–1463.[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.2007/012021-0
Loading
/content/journal/micro/10.1099/mic.0.2007/012021-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error