1887

Abstract

Streptomycetes are mycelial soil bacteria that undergo a developmental programme that leads to sporulating aerial hyphae. As soil-dwelling bacteria, streptomycetes rely primarily on natural polymers such as cellulose, xylan and chitin for the colonization of their environmental niche and therefore these polysaccharides may play a critical role in monitoring the global nutritional status of the environment. In this work we analysed the role of DasA, the sugar-binding component of the chitobiose ATP-binding cassette transport system, in informing the cell of environmental conditions, and its role in the onset of development and in ensuring correct sporulation. The chromosomal interruption of resulted in a carbon-source-dependent vegetative arrest phenotype, and we identified a second DasR-dependent sugar transporter, in addition to the -acetylglucosamine phosphotransferase system (PTS), that relates primary metabolism to development. Under conditions that allowed sporulation, highly aberrant spores with many prematurely produced germ tubes were observed. While GlcNAc locks streptomycetes in the vegetative state, a high extracellular concentration of the GlcNAc polymer chitin has no effect on development. The striking distinction is due to a difference in the transporters responsible for the import of GlcNAc, which enters via the PTS, and of chitin, which enters as the hydrolytic product chitobiose (GlcNAc) through the DasABC transporter. A model explaining the role of these two essentially different transport systems in the control of development is provided.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.2007/011940-0
2008-02-01
2019-11-16
Loading full text...

Full text loading...

/deliver/fulltext/micro/154/2/373.html?itemId=/content/journal/micro/10.1099/mic.0.2007/011940-0&mimeType=html&fmt=ahah

References

  1. Angell, S., Lewis, C. G., Buttner, M. J. & Bibb, M. J. ( 1994; ). Glucose repression in Streptomyces coelicolor A3(2): a likely regulatory role for glucose kinase. Mol Gen Genet 244, 135–143.
    [Google Scholar]
  2. Bishop, A., Fielding, S., Dyson, P. & Herron, P. ( 2004; ). Systematic insertional mutagenesis of a streptomycete genome: a link between osmoadaptation and antibiotic production. Genome Res 14, 893–900.[CrossRef]
    [Google Scholar]
  3. Chater, K. F. ( 1972; ). A morphological and genetic mapping study of white colony mutants of Streptomyces coelicolor. J Gen Microbiol 72, 9–28.[CrossRef]
    [Google Scholar]
  4. Chater, K. F. & Horinouchi, S. ( 2003; ). Signalling early developmental events in two highly diverged Streptomyces species. Mol Microbiol 48, 9–15.[CrossRef]
    [Google Scholar]
  5. Colson, S., Stephan, J., Hertrich, T., Saito, A., van Wezel, G. P., Titgemeyer, F. & Rigali, S. ( 2007; ). Conserved cis-acting elements upstream of genes composing the chitinolytic system of streptomycetes are DasR-responsive elements. J Mol Microbiol Biotechnol 12, 60–66.[CrossRef]
    [Google Scholar]
  6. Derouaux, A., Dehareng, D., Lecocq, E., Halici, S., Nothaft, H., Giannotta, F., Moutzourelis, G., Dusart, J., Devreese, B. & other authors ( 2004a; ). Crp of Streptomyces coelicolor is the third transcription factor of the large CRP-FNR superfamily able to bind cAMP. Biochem Biophys Res Commun 325, 983–990.[CrossRef]
    [Google Scholar]
  7. Derouaux, A., Halici, S., Nothaft, H., Neutelings, T., Moutzourelis, G., Dusart, J., Titgemeyer, F. & Rigali, S. ( 2004b; ). Deletion of a cyclic AMP receptor protein homologue diminishes germination and affects morphological development of Streptomyces coelicolor. J Bacteriol 186, 1893–1897.[CrossRef]
    [Google Scholar]
  8. Diaz, M., Esteban, A., Fernandez-Abalos, J. M. & Santamaria, R. I. ( 2005; ). The high-affinity phosphate-binding protein PstS is accumulated under high fructose concentrations and mutation of the corresponding gene affects differentiation in Streptomyces lividans. Microbiology 151, 2583–2592.[CrossRef]
    [Google Scholar]
  9. Godden, B., Legon, T., Helvenstein, P. & Penninckx, M. ( 1989; ). Regulation of the production of hemicellulolytic and cellulolytic enzymes by a Streptomyces sp. growing on lignocellulose. J Gen Microbiol 135, 285–292.
    [Google Scholar]
  10. Hiard, S., Maree, R., Colson, S., Hoskisson, P. A., Titgemeyer, F., van Wezel, G. P., Joris, B., Wehenkel, L. & Rigali, S. ( 2007; ). PREDetector: a new tool to identify regulatory elements in bacterial genomes. Biochem Biophys Res Commun 357, 861–864.[CrossRef]
    [Google Scholar]
  11. Hillerich, B. & Westpheling, J. ( 2006; ). A new GntR family transcriptional regulator in Streptomyces coelicolor is required for morphogenesis and antibiotic production and controls transcription of an ABC transporter in response to carbon source. J Bacteriol 188, 7477–7487.[CrossRef]
    [Google Scholar]
  12. Hopwood, D. A., Wildermuth, H. & Palmer, H. M. ( 1970; ). Mutants of Streptomyces coelicolor defective in sporulation. J Gen Microbiol 61, 397–408.[CrossRef]
    [Google Scholar]
  13. Hoskisson, P. A., Rigali, S., Fowler, K., Findlay, K. C. & Buttner, M. J. ( 2006; ). DevA, a GntR-like transcriptional regulator required for development in Streptomyces coelicolor. J Bacteriol 188, 5014–5023.[CrossRef]
    [Google Scholar]
  14. Kieser, T., Bibb, M. J., Buttner, M. J., Chater, K. F. & Hopwood, D. A. ( 2000; ). Practical Streptomyces Genetics. Norwich, UK: John Innes Foundation.
  15. Kleerebezem, M., Quadri, L. E., Kuipers, O. P. & de Vos, W. M. ( 1997; ). Quorum sensing by peptide pheromones and two-component signal-transduction systems in Gram-positive bacteria. Mol Microbiol 24, 895–904.[CrossRef]
    [Google Scholar]
  16. Kormanec, J., Sevcikova, B. & Homerova, D. ( 2000; ). Cloning of a two-component regulatory system probably involved in the regulation of chitinase in Streptomyces coelicolor A3(2). Folia Microbiol (Praha) 45, 397–406.[CrossRef]
    [Google Scholar]
  17. Kubota, T., Miyamoto, K., Yasuda, M., Inamori, Y. & Tsujibo, H. ( 2004; ). Molecular characterization of an intracellular β-N-acetylglucosaminidase involved in the chitin degradation system of Streptomyces thermoviolaceus OPC-520. Biosci Biotechnol Biochem 68, 1306–1314.[CrossRef]
    [Google Scholar]
  18. Li, X. & Roseman, S. ( 2004; ). The chitinolytic cascade in Vibrios is regulated by chitin oligosaccharides and a two-component chitin catabolic sensor/kinase. Proc Natl Acad Sci U S A 101, 627–631.[CrossRef]
    [Google Scholar]
  19. Miyashita, K., Fujii, T. & Saito, A. ( 2000; ). Induction and repression of a Streptomyces lividans chitinase gene promoter in response to various carbon sources. Biosci Biotechnol Biochem 64, 39–43.[CrossRef]
    [Google Scholar]
  20. Nodwell, J. R., McGovern, K. & Losick, R. ( 1996; ). An oligopeptide permease responsible for the import of an extracellular signal governing aerial mycelium formation in Streptomyces coelicolor. Mol Microbiol 22, 881–893.[CrossRef]
    [Google Scholar]
  21. Nodwell, J. R., Yang, M., Kuo, D. & Losick, R. ( 1999; ). Extracellular complementation and the identification of additional genes involved in aerial mycelium formation in Streptomyces coelicolor. Genetics 151, 569–584.
    [Google Scholar]
  22. Nothaft, H., Dresel, D., Willimek, A., Mahr, K., Niederweis, M. & Titgemeyer, F. ( 2003; ). The phosphotransferase system of Streptomyces coelicolor is biased for N-acetylglucosamine metabolism. J Bacteriol 185, 7019–7023.[CrossRef]
    [Google Scholar]
  23. Piette, A., Derouaux, A., Gerkens, P., Noens, E. E., Mazzucchelli, G., Vion, S., Koerten, H. K., Titgemeyer, F., De Pauw, E. & other authors ( 2005; ). From dormant to germinating spores of Streptomyces coelicolor A3(2): new perspectives from the crp null mutant. J Proteome Res 4, 1699–1708.[CrossRef]
    [Google Scholar]
  24. Pope, M. K., Green, B. D. & Westpheling, J. ( 1996; ). The bld mutants of Streptomyces coelicolor are defective in the regulation of carbon utilization, morphogenesis and cell–cell signalling. Mol Microbiol 19, 747–756.[CrossRef]
    [Google Scholar]
  25. Rigali, S., Derouaux, A., Giannotta, F. & Dusart, J. ( 2002; ). Subdivision of the helix-turn-helix GntR family of bacterial regulators in the FadR, HutC, MocR, and YtrA subfamilies. J Biol Chem 277, 12507–12515.[CrossRef]
    [Google Scholar]
  26. Rigali, S., Schlicht, M., Hoskisson, P., Nothaft, H., Merzbacher, M., Joris, B. & Titgemeyer, F. ( 2004; ). Extending the classification of bacterial transcription factors beyond the helix-turn-helix motif as an alternative approach to discover new cis/trans relationships. Nucleic Acids Res 32, 3418–3426.[CrossRef]
    [Google Scholar]
  27. Rigali, S., Nothaft, H., Noens, E. E., Schlicht, M., Colson, S., Muller, M., Joris, B., Koerten, H. K., Hopwood, D. A. & other authors ( 2006; ). The sugar phosphotransferase system of Streptomyces coelicolor is regulated by the GntR-family regulator DasR and links N-acetylglucosamine metabolism to the control of development. Mol Microbiol 61, 1237–1251.[CrossRef]
    [Google Scholar]
  28. Ryding, N. J., Kelemen, G. H., Whatling, C. A., Flardh, K., Buttner, M. J. & Chater, K. F. ( 1998; ). A developmentally regulated gene encoding a repressor-like protein is essential for sporulation in Streptomyces coelicolor A3(2). Mol Microbiol 29, 343–357.[CrossRef]
    [Google Scholar]
  29. Saito, A., Shinya, T., Miyamoto, K., Yokoyama, T., Kaku, H., Minami, E., Shibuya, N., Tsujibo, H., Nagata, Y. & other authors ( 2007; ). The dasABC gene cluster, adjacent to dasR, encodes a novel ABC transporter for the uptake of N,N′-diacetylchitobiose in Streptomyces coelicolor A3(2). Appl Environ Microbiol 73, 3000–3008.[CrossRef]
    [Google Scholar]
  30. Seo, J. W., Ohnishi, Y., Hirata, A. & Horinouchi, S. ( 2002; ). ATP-binding cassette transport system involved in regulation of morphological differentiation in response to glucose in Streptomyces griseus. J Bacteriol 184, 91–103.[CrossRef]
    [Google Scholar]
  31. Sugawara, K., Dohmae, N., Kasai, K., Saido-Sakanaka, H., Okamoto, S., Takio, K. & Ochi, K. ( 2002; ). Isolation and identification of novel ADP-ribosylated proteins from Streptomyces coelicolor A3(2). Biosci Biotechnol Biochem 66, 2292–2296.[CrossRef]
    [Google Scholar]
  32. van Wezel, G. P., Mahr, K., Konig, M., Traag, B. A., Pimentel-Schmitt, E. F., Willimek, A. & Titgemeyer, F. ( 2005; ). GlcP constitutes the major glucose uptake system of Streptomyces coelicolor A3(2). Mol Microbiol 55, 624–636.
    [Google Scholar]
  33. Zhang, H., Huang, X., Fukamizo, T., Muthukrishnan, S. & Kramer, K. J. ( 2002; ). Site-directed mutagenesis and functional analysis of an active site tryptophan of insect chitinase. Insect Biochem Mol Biol 32, 1477–1488.[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.2007/011940-0
Loading
/content/journal/micro/10.1099/mic.0.2007/011940-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error