1887

Abstract

Detecting patterns of horizontal gene transfer (HGT) in genomic sequences is an important problem, with implications for evolution, ecology, biotechnology and medicine. Extensive genetic, biochemical and genomic studies have provided a good understanding of sequence features that are associated with many (though not all) known mobile elements and mechanisms of gene transfer. This information, however, is not currently incorporated into automated methods for gene transfer detection in genomic data. In this review, we argue that automated annotation of sequence features associated with gene transfer mechanisms could be used both to build more sensitive, mechanism-specific compositional models for the detection of some types of HGT in genomic data, and to ask new questions about the classes of genes most frequently transferred by each mechanism. We then summarize the genes and sequence features associated with different mechanisms of horizontal transfer, emphasizing those that are most useful for distinguishing types of transfer when examining genomic data, and noting those classes of transfers that cannot be distinguished in genomic data using existing techniques. Finally, we describe software, databases and algorithms for identifying particular classes of mobile elements, and outline prospects for better detection of HGT based on specific mechanisms of transfer.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.2007/011833-0
2008-01-01
2019-11-20
Loading full text...

Full text loading...

/deliver/fulltext/micro/154/1/1.html?itemId=/content/journal/micro/10.1099/mic.0.2007/011833-0&mimeType=html&fmt=ahah

References

  1. Altschul, S. F., Madden, T. L., Schaffer, A. A., Zhang, J., Zhang, Z., Miller, W. & Lipman, D. J. ( 1997; ). Gapped BLAST and PSIBLAST: a new generation of protein database search programs. Nucleic Acids Res 25, 3389–3402.[CrossRef]
    [Google Scholar]
  2. Ambur, O. H., Frye, S. A. & Tonjum, T. ( 2007; ). New functional identity for the DNA uptake sequence in transformation and its presence in transcriptional terminators. J Bacteriol 189, 2077–2085.[CrossRef]
    [Google Scholar]
  3. Averhoff, B. ( 2004; ). DNA transport and natural transformation in mesophilic and thermophilic bacteria. J Bioenerg Biomembr 36, 25–33.[CrossRef]
    [Google Scholar]
  4. Avery, O., MacLeod, C. & McCarty, M. ( 1944; ). Studies on the chemical nature of the substance inducing transformation of pneumococcal types. J Exp Med 79, 137–158.[CrossRef]
    [Google Scholar]
  5. Bacon, D. J., Alm, R. A., Burr, D. H., Hu, L., Kopecko, D. J., Ewing, C. P., Trust, T. J. & Guerry, P. ( 2000; ). Involvement of a plasmid in virulence of Campylobacter jejuni 81176. Infect Immun 68, 4384–4390.[CrossRef]
    [Google Scholar]
  6. Bertani, G. ( 1999; ). Transduction-like gene transfer in the methanogen Methanococcus voltae. J Bacteriol 181, 2992–3002.
    [Google Scholar]
  7. Bertani, G. & Baresi, L. ( 1987; ). Genetic transformation in the methanogen Methanococcus voltae PS. J Bacteriol 169, 2730–2738.
    [Google Scholar]
  8. Bose, M. & Barber, R. D. ( 2006; ). Prophage Finder: a prophage loci prediction tool for prokaryotic genome sequences. In Silico Biol 6, 223–227.
    [Google Scholar]
  9. Burrus, V., Pavlovic, G., Decaris, B. & Guedon, G. ( 2002; ). Conjugative transposons: the tip of the iceberg. Mol Microbiol 46, 601–610.[CrossRef]
    [Google Scholar]
  10. Bushman, F. ( 2002; ). Lateral DNA Transfer: Mechanisms and Consequences. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory Press.
  11. Canchaya, C., Fournous, G., Chibani-Chennoufi, S., Dillmann, M. L. & Brussow, H. ( 2003; ). Phage as agents of lateral gene transfer. Curr Opin Microbiol 6, 417–424.[CrossRef]
    [Google Scholar]
  12. Casjens, S. ( 2003; ). Prophages and bacterial genomics: what have we learned so far? Mol Microbiol 49, 277–300.[CrossRef]
    [Google Scholar]
  13. Chen, I., Christie, P. J. & Dubnau, D. ( 2005; ). The ins and outs of DNA transfer in bacteria. Science 310, 1456–1460.[CrossRef]
    [Google Scholar]
  14. Cho, E. H., Nam, C. E., Alcaraz, R., Jr & Gardner, J. F. ( 1999; ). Site-specific recombination of bacteriophage P22 does not require integration host factor. J Bacteriol 181, 4245–4249.
    [Google Scholar]
  15. Choi, I. G. & Kim, S. H. ( 2007; ). Global extent of horizontal gene transfer. Proc Natl Acad Sci U S A 104, 4489–4494.[CrossRef]
    [Google Scholar]
  16. Court, D. L., Oppenheim, A. B. & Adhya, S. L. ( 2007; ). A new look at bacteriophage lambda genetic networks. J Bacteriol 189, 298–304.[CrossRef]
    [Google Scholar]
  17. Curcio, M. J. & Derbyshire, K. M. ( 2003; ). The outs and ins of transposition: from mu to kangaroo. Nat Rev Mol Cell Biol 4, 865–877.[CrossRef]
    [Google Scholar]
  18. Davidsen, T., Rodland, E. A., Lagesen, K., Seeberg, E., Rognes, T. & Tonjum, T. ( 2004; ). Biased distribution of DNA uptake sequences towards genome maintenance genes. Nucleic Acids Res 32, 1050–1058.[CrossRef]
    [Google Scholar]
  19. Dubnau, D. ( 1999; ). DNA uptake in bacteria. Annu Rev Microbiol 53, 217–244.[CrossRef]
    [Google Scholar]
  20. Eddy, S. R. & Durbin, R. ( 1994; ). RNA sequence analysis using covariance models. Nucleic Acids Res 22, 2079–2088.[CrossRef]
    [Google Scholar]
  21. Errington, J. ( 2001; ). Septation and chromosome segregation during sporulation in Bacillus subtilis. Curr Opin Microbiol 4, 660–666.[CrossRef]
    [Google Scholar]
  22. Farahi, K., Whitman, W. B. & Kraemer, E. T. ( 2003; ). RED-T: utilizing the Ratios of Evolutionary Distances for determination of alternative phylogenetic events. Bioinformatics 19, 2152–2154.[CrossRef]
    [Google Scholar]
  23. Figueroa-Bossi, N., Uzzau, S., Maloriol, D. & Bossi, L. ( 2001; ). Variable assortment of prophages provides a transferable repertoire of pathogenic determinants in Salmonella. Mol Microbiol 39, 260–271.[CrossRef]
    [Google Scholar]
  24. Fluit, A. C. & Schmitz, F. J. ( 2004; ). Resistance integrons and superintegrons. Clin Microbiol Infect 10, 272–288.[CrossRef]
    [Google Scholar]
  25. Fouts, D. E. ( 2006; ). Phage_Finder: automated identification and classification of prophage regions in complete bacterial genome sequences. Nucleic Acids Res 34, 5839–5851.[CrossRef]
    [Google Scholar]
  26. Franco, B., Gonzalez-Ceron, G. & Servin-Gonzalez, L. ( 2003; ). Direct repeat sequences are essential for function of the cis-acting locus of transfer (clt) of Streptomyces phaeochromogenes plasmid pJV1. Plasmid 50, 242–247.[CrossRef]
    [Google Scholar]
  27. Franke, A. E. & Clewell, D. B. ( 1981; ). Evidence for a chromosome-borne resistance transposon (Tn916) in Streptococcus faecalis that is capable of “conjugal” transfer in the absence of a conjugative plasmid. J Bacteriol 145, 494–502.
    [Google Scholar]
  28. Frost, L. S., Leplae, R., Summers, A. O. & Toussaint, A. ( 2005; ). Mobile genetic elements: the agents of open source evolution. Nat Rev Microbiol 3, 722–732.[CrossRef]
    [Google Scholar]
  29. Galimand, M., Sabtcheva, S., Courvalin, P. & Lambert, T. ( 2005; ). Worldwide disseminated armA aminoglycoside resistance methylase gene is borne by composite transposon Tn1548. Antimicrob Agents Chemother 49, 2949–2953.[CrossRef]
    [Google Scholar]
  30. Ge, F., Wang, L. S. & Kim, J. ( 2005; ). The cobweb of life revealed by genome-scale estimates of horizontal gene transfer. PLoS Biol 3, e316 [CrossRef]
    [Google Scholar]
  31. Griffith, F. ( 1928; ). The significance of pneumococcal types. J Hyg (Lond) 27, 113–159.[CrossRef]
    [Google Scholar]
  32. Grohmann, E., Muth, G. & Espinosa, M. ( 2003; ). Conjugative plasmid transfer in gram-positive bacteria. Microbiol Mol Biol Rev 67, 277–301.[CrossRef]
    [Google Scholar]
  33. Hall, R. M., Holmes, A. J., Roy, P. H. & Stokes, H. W. ( 2007; ). What are superintegrons? Nat Rev Microbiol 5, C1
    [Google Scholar]
  34. Harel, J., Duplessis, L., Kahn, J. & DuBow, M. ( 1990; ). The cis-acting DNA sequences required in vivo for bacteriophage mu helper-mediated transposition and packaging. Arch Microbiol 154, 67–72.
    [Google Scholar]
  35. Heidelberg, J. F., Eisen, J. A., Nelson, W. C., Clayton, R. A., Gwinn, M. L., Dodson, R. J., Haft, D. H., Hickey, E. K., Peterson, J. D. & other authors ( 2000; ). DNA sequence of both chromosomes of the cholera pathogen Vibrio cholerae. Nature 406, 477–483.[CrossRef]
    [Google Scholar]
  36. Hofreuter, D., Odenbreit, S. & Haas, R. ( 2001; ). Natural transformation competence in Helicobacter pylori is mediated by the basic components of a type IV secretion system. Mol Microbiol 41, 379–391.[CrossRef]
    [Google Scholar]
  37. Hooper, S. D. & Berg, O. G. ( 2002; ). Detection of genes with atypical nucleotide sequence in microbial genomes. J Mol Evol 54, 365–375.[CrossRef]
    [Google Scholar]
  38. Hsiao, W., Wan, I., Jones, S. J. & Brinkman, F. S. L. ( 2003; ). IslandPath: aiding detection of genomic islands in prokaryotes. Bioinformatics 19, 418–420.[CrossRef]
    [Google Scholar]
  39. Hsiao, W. W., Ung, K., Aeschliman, D., Bryan, J., Finlay, B. B. & Brinkman, F. S. ( 2005; ). Evidence of a large novel gene pool associated with prokaryotic genomic islands. PLoS Genet 1, e62 [CrossRef]
    [Google Scholar]
  40. Humphrey, S. B., Stanton, T. B., Jensen, N. S. & Zuerner, R. L. ( 1997; ). Purification and characterization of VSH1, a generalized transducing bacteriophage of Serpulina hyodysenteriae. J Bacteriol 179, 323–329.
    [Google Scholar]
  41. Jensen, E. C., Schrader, H. S., Rieland, B., Thompson, T. L., Lee, K. W., Nickerson, K. W. & Kokjohn, T. A. ( 1998; ). Prevalence of broad host-range lytic bacteriophages of Sphaerotilus natans, Escherichia coli, and Pseudomonas aeruginosa. Appl Environ Microbiol 64, 575–580.
    [Google Scholar]
  42. Jordan, I. K., Makarova, K. S., Spouge, J. L., Wolf, Y. I. & Koonin, E. V. ( 2001; ). Lineage-specific gene expansions in bacterial and archaeal genomes. Genome Res 11, 555–565.[CrossRef]
    [Google Scholar]
  43. Karlin, S., Mrazek, J. & Campbell, A. M. ( 1998; ). Codon usages in different gene classes of the Escherichia coli genome. Mol Microbiol 29, 1341–1355.[CrossRef]
    [Google Scholar]
  44. Kechris, K. J., Lin, J. C., Bickel, P. J. & Glazer, A. N. ( 2006; ). Quantitative exploration of the occurrence of lateral gene transfer by using nitrogen fixation genes as a case study. Proc Natl Acad Sci U S A 103, 9584–9589.[CrossRef]
    [Google Scholar]
  45. Kinsella, R. J. & McInerney, J. O. ( 2003; ). Eukaryotic genes in Mycobacterium tuberculosis? Possible alternative explanations. Trends Genet 19, 687–689.[CrossRef]
    [Google Scholar]
  46. Lander, E. S., Linton, L. M., Birren, B., Nusbaum, C., Zody, M. C., Baldwin, J., Devon, K., Dewar, K., Doyle, M. & other authors ( 2001; ). Initial sequencing and analysis of the human genome. Nature 409, 860–921.[CrossRef]
    [Google Scholar]
  47. Lang, A. S. & Beatty, J. T. ( 2007; ). Importance of widespread gene transfer agent genes in alpha-proteobacteria. Trends Microbiol 15, 54–62.[CrossRef]
    [Google Scholar]
  48. Lanka, E. & Wilkins, B. M. ( 1995; ). DNA processing reactions in bacterial conjugation. Annu Rev Biochem 64, 141–169.[CrossRef]
    [Google Scholar]
  49. Lawrence, J. G. & Hendrickson, H. ( 2003; ). Lateral gene transfer: when will adolescence end? Mol Microbiol 50, 739–749.[CrossRef]
    [Google Scholar]
  50. Lawrence, J. G. & Ochman, H. ( 1997; ). Amelioration of bacterial genomes: rates of change and exchange. J Mol Evol 44, 383–397.[CrossRef]
    [Google Scholar]
  51. Lawrence, J. G. & Ochman, H. ( 1998; ). Molecular archaeology of the Escherichia coli genome. Proc Natl Acad Sci U S A 95, 9413–9417.[CrossRef]
    [Google Scholar]
  52. Leplae, R., Hebrant, A., Wodak, S. J. & Toussaint, A. ( 2004; ). ACLAME: A CLAssification of Mobile genetic Elements. Nucleic Acids Res 32, D45–D49.[CrossRef]
    [Google Scholar]
  53. Liebert, C. A., Hall, R. M. & Summers, A. O. ( 1999; ). Transposon Tn21, flagship of the floating genome. Microbiol Mol Biol Rev 63, 507–522.
    [Google Scholar]
  54. Lorenz, M. G. & Wackernagel, W. ( 1994; ). Bacterial gene transfer by natural genetic transformation in the environment. Microbiol Rev 58, 563–602.
    [Google Scholar]
  55. Marrs, B. ( 1974; ). Genetic recombination in Rhodopseudomonas capsulata. Proc Natl Acad Sci U S A 71, 971–973.[CrossRef]
    [Google Scholar]
  56. Mazel, D. ( 2006; ). Integrons: agents of bacterial evolution. Nat Rev Microbiol 4, 608–620.[CrossRef]
    [Google Scholar]
  57. Meibom, K. L., Blokesch, M., Dolganov, N. A., Wu, C. & Schoolnik, G. K. ( 2005; ). Chitin induces natural competence in Vibrio cholerae. Science 310, 1824–1827.[CrossRef]
    [Google Scholar]
  58. Messier, N. & Roy, P. H. ( 2001; ). Integron integrases possess a unique additional domain necessary for activity. J Bacteriol 183, 6699–6706.[CrossRef]
    [Google Scholar]
  59. Mirkin, B. G., Fenner, T. I., Galperin, M. Y. & Koonin, E. V. ( 2003; ). Algorithms for computing parsimonious evolutionary scenarios for genome evolution, the last universal common ancestor and dominance of horizontal gene transfer in the evolution of prokaryotes. BMC Evol Biol 3, 2 [CrossRef]
    [Google Scholar]
  60. Nakamura, Y., Itoh, T., Matsuda, H. & Gojobori, T. ( 2004; ). Biased biological functions of horizontally transferred genes in prokaryotic genomes. Nat Genet 36, 760–766.[CrossRef]
    [Google Scholar]
  61. Nelson, K. E., Clayton, R. A., Gill, S. R., Gwinn, M. L., Dodson, R. J., Haft, D. H., Hickey, E. K., Peterson, J. D., Nelson, W. C. & other authors ( 1999; ). Evidence for lateral gene transfer between Archaea and bacteria from genome sequence of Thermotoga maritima. Nature 399, 323–329.[CrossRef]
    [Google Scholar]
  62. Nemergut, D. R., Martin, A. P. & Schmidt, S. K. ( 2004; ). Integron diversity in heavy metal-contaminated mine tailings and inferences about integron evolution. Appl Environ Microbiol 70, 1160–1168.[CrossRef]
    [Google Scholar]
  63. Nesvera, J., Hochmannova, J. & Patek, M. ( 1998; ). An integron of class 1 is present on the plasmid pCG4 from gram-positive bacterium Corynebacterium glutamicum. FEMS Microbiol Lett 169, 391–395.[CrossRef]
    [Google Scholar]
  64. Ochman, H., Lawrence, J. G. & Groisman, E. A. ( 2000; ). Lateral gene transfer and the nature of bacterial innovation. Nature 405, 299–304.[CrossRef]
    [Google Scholar]
  65. Osborn, A. M. & Boltner, D. ( 2002; ). When phage, plasmids, and transposons collide: genomic islands, and conjugative and mobilizable transposons as a mosaic continuum. Plasmid 48, 202–212.[CrossRef]
    [Google Scholar]
  66. Page, R. D. & Charleston, M. A. ( 1997; ). From gene to organismal phylogeny: reconciled trees and the gene tree/species tree problem. Mol Phylogenet Evol 7, 231–240.[CrossRef]
    [Google Scholar]
  67. Possoz, C., Ribard, C., Gagnat, J., Pernodet, J. L. & Guerineau, M. ( 2001; ). The integrative element pSAM2 from Streptomyces: kinetics and mode of conjugal transfer. Mol Microbiol 42, 159–166.
    [Google Scholar]
  68. Prangishvili, D., Albers, S. V., Holz, I., Arnold, H. P., Stedman, K., Klein, T., Singh, H., Hiort, J., Schweier, A. & other authors ( 1998; ). Conjugation in archaea: frequent occurrence of conjugative plasmids in Sulfolobus. Plasmid 40, 190–202.[CrossRef]
    [Google Scholar]
  69. Ragan, M. A. ( 2001; ). On surrogate methods for detecting lateral gene transfer. FEMS Microbiol Lett 201, 187–191.[CrossRef]
    [Google Scholar]
  70. Ragan, M. A., Harlow, T. J. & Beiko, R. G. ( 2006; ). Do different surrogate methods detect lateral genetic transfer events of different relative ages? Trends Microbiol 14, 4–8.[CrossRef]
    [Google Scholar]
  71. Rowe-Magnus, D. A., Guerout, A. M., Ploncard, P., Dychinco, B., Davies, J. & Mazel, D. ( 2001; ). The evolutionary history of chromosomal superintegrons provides an ancestry for multi-resistant integrons. Proc Natl Acad Sci U S A 98, 652–657.[CrossRef]
    [Google Scholar]
  72. Rowe-Magnus, D. A., Guerout, A. M., Biskri, L., Bouige, P. & Mazel, D. ( 2003; ). Comparative analysis of superintegrons: engineering extensive genetic diversity in the Vibrionaceae. Genome Res 13, 428–442.[CrossRef]
    [Google Scholar]
  73. Sato, T., Fukui, T., Atomi, H. & Imanaka, T. ( 2003; ). Targeted gene disruption by homologous recombination in the hyperthermophilic archaeon Thermococcus kodakaraensis KOD1. J Bacteriol 185, 210–220.[CrossRef]
    [Google Scholar]
  74. Schaefer, M. R. & Kahn, K. ( 1998; ). Cyanobacterial transposons Tn5469 and Tn5541 represent a novel non-composite transposon family. J Bacteriol 180, 6059–6063.
    [Google Scholar]
  75. Servin-Gonzalez, L. ( 1996; ). Identification and properties of a novel clt locus in the Streptomyces phaeochromogenes plasmid pJV1. J Bacteriol 178, 4323–4326.
    [Google Scholar]
  76. Sharp, P. M. & Li, W. H. ( 1987; ). The Codon Adaptation Index – a measure of directional synonymous codon usage bias, and its potential applications. Nucleic Acids Res 15, 1281–1295.[CrossRef]
    [Google Scholar]
  77. She, Q., Shen, B. & Chen, L. ( 2004; ). Archaeal integrases and mechanisms of gene capture. Biochem Soc Trans 32, 222–226.[CrossRef]
    [Google Scholar]
  78. Siguier, P., Perochon, J., Lestrade, L., Mahillon, J. & Chandler, M. ( 2006; ). ISfinder: the reference centre for bacterial insertion sequences. Nucleic Acids Res 34, D32–D36.[CrossRef]
    [Google Scholar]
  79. Stedman, K. M., She, Q., Phan, H., Holz, I., Singh, H., Prangishvili, D., Garrett, R. & Zillig, W. ( 2000; ). pING family of conjugative plasmids from the extremely thermophilic archaeon Sulfolobus islandicus: insights into recombination and conjugation in Crenarchaeota. J Bacteriol 182, 7014–7020.[CrossRef]
    [Google Scholar]
  80. Stokes, H. W. & Hall, R. M. ( 1989; ). A novel family of potentially mobile DNA elements encoding site-specific gene-integration functions: integrons. Mol Microbiol 3, 1669–1683.[CrossRef]
    [Google Scholar]
  81. Stokes, H. W., Nesbø, C. L., Holley, M., Bahl, M. I., Gillings, M. R. & Boucher, Y. ( 2006; ). Class 1 integrons potentially predating the association with Tn402-like transposition genes are present in a sediment microbial community. J Bacteriol 188, 5722–5730.[CrossRef]
    [Google Scholar]
  82. Syvanen, M. ( 1994; ). Horizontal gene transfer: evidence and possible consequences. Annu Rev Genet 28, 237–261.[CrossRef]
    [Google Scholar]
  83. Tatum, E. L. & Lederberg, J. ( 1947; ). Gene recombination in the bacterium Escherichia coli. J Bacteriol 53, 673–684.
    [Google Scholar]
  84. Thomas, C. M. & Nielsen, K. M. ( 2005; ). Mechanisms of, and barriers to, horizontal gene transfer between bacteria. Nat Rev Microbiol 3, 711–721.[CrossRef]
    [Google Scholar]
  85. Tigari, S. & Moseley, B. E. B. ( 1980; ). Transformation in Micrococcus radiodurans, measurement of various parameters and evidence for multiple independently segregating genomes per cell. J Gen Microbiol 119, 287–296.
    [Google Scholar]
  86. Top, E. M. & Springael, D. ( 2003; ). The role of mobile genetic elements in bacterial adaptation to xenobiotic organic compounds. Curr Opin Biotechnol 14, 262–269.[CrossRef]
    [Google Scholar]
  87. Toussaint, A. & Merlin, C. ( 2002; ). Mobile elements as a combination of functional modules. Plasmid 47, 26–35.[CrossRef]
    [Google Scholar]
  88. van Essen-Zandbergen, A., Smith, H., Veldman, K. & Mevius, D. ( 2007; ). Occurrence and characteristics of class 1, 2 and 3 integrons in Escherichia coli, Salmonella and Campylobacter spp. in the Netherlands. J Antimicrob Chemother 59, 746–750.[CrossRef]
    [Google Scholar]
  89. van Passel, M. W., Bart, A., Luyf, A. C., van Kampen, A. H. & van der Ende, A. ( 2006; ). Compositional discordance between prokaryotic plasmids and host chromosomes. BMC Genomics 7, 26 [CrossRef]
    [Google Scholar]
  90. Vernikos, G. S. & Parkhill, J. ( 2006; ). Interpolated variable order motifs for identification of horizontally acquired DNA: revisiting the Salmonella pathogenicity islands. Bioinformatics 22, 2196–2203.[CrossRef]
    [Google Scholar]
  91. Wagner, A. ( 2006; ). Periodic extinctions of transposable elements in bacterial lineages: evidence from intra-genomic variation in multiple genomes. Mol Biol Evol 23, 723–733.[CrossRef]
    [Google Scholar]
  92. Walsh, T. R. ( 2006; ). Combinatorial genetic evolution of multi-resistance. Curr Opin Microbiol 9, 476–482.[CrossRef]
    [Google Scholar]
  93. Williams, K. P. ( 2002; ). Integration sites for genetic elements in prokaryotic tRNA and tmRNA genes: sublocation preference of integrase subfamilies. Nucleic Acids Res 30, 866–875.[CrossRef]
    [Google Scholar]
  94. Worrell, V. E., Nagle, D. P. J., McCarthy, D. & Eisenbraun, A. ( 1988; ). Genetic transformation system in the archaebacterium Methanobacterium thermoautotrophicum Marburg. J Bacteriol 170, 653–656.
    [Google Scholar]
  95. Zechner, E., de la Cruz, F., Eisenbrandt, R., Grahn, A. M., Koraimann, G., Lanka, E., Muth, G., Pasegrau, W., Thomas, C. M. & other authors ( 2000; ). Conjugative DNA Transfer Processes. In The Horizontal Gene Pool: Bacterial Plasmids and Gene Spread, pp. 87–155. Edited by C. M. Thomas. Newark, NJ: Harwood Academic Publishers.
  96. Zinder, N. D. & Lederberg, J. ( 1952; ). Genetic exchange in Salmonella. J Bacteriol 64, 679–699.
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.2007/011833-0
Loading
/content/journal/micro/10.1099/mic.0.2007/011833-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error