1887

Abstract

Microbial genome sequencing has, for the first time, made accessible all the components needed for both the elaboration and the functioning of a cell. Associated with other global methods such as protein and mRNA profiling, genomics has considerably extended our knowledge of physiological processes and their diversity not only in human, animal and plant pathogens but also in environmental isolates. At a higher level of complexity, the so-called meta approaches have recently shown great promise in investigating microbial communities, including uncultured micro-organisms. Combined with classical methods of physico-chemistry and microbiology, these endeavours should provide us with an integrated view of how micro-organisms adapt to particular ecological niches and participate in the dynamics of ecosystems.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.2007/011791-0
2008-02-01
2019-10-18
Loading full text...

Full text loading...

/deliver/fulltext/micro/154/2/347.html?itemId=/content/journal/micro/10.1099/mic.0.2007/011791-0&mimeType=html&fmt=ahah

References

  1. Aebersold, R. & Mann, M. ( 2003; ). Mass spectrometry-based proteomics. Nature 422, 198–207.[CrossRef]
    [Google Scholar]
  2. Bailly, X., Olivieri, I., De Mita, S., Cleyet-Marel, J. C. & Bena, G. ( 2006; ). Recombination and selection shape the molecular diversity pattern of nitrogen-fixing Sinorhizobium sp. associated to Medicago. Mol Ecol 15, 2719–2734.[CrossRef]
    [Google Scholar]
  3. Becker, A., Bergès, H., Krol, E., Bruand, C., Rüberg, S., Capela, D., Lauber, E., Meilhoc, E., Ampe, F. & other authors ( 2004; ). Global changes in gene expression in Sinorhizobium meliloti 1021 under microoxic and symbiotic conditions. Mol Plant Microbe Interact 17, 292–303.[CrossRef]
    [Google Scholar]
  4. Bencheikh-Latmani, R., Williams, S. M., Haucke, L., Criddle, C. S., Wu, L., Zhou, J. & Tebo, B. M. ( 2005; ). Global transcriptional profiling of Shewanella oneidensis MR-1 during Cr(VI) and U(VI) reduction. Appl Environ Microbiol 71, 7453–7460.[CrossRef]
    [Google Scholar]
  5. Bentley, S. D., Maiwald, M., Murphy, L. D., Pallen, M. J., Yeats, C. A., Dover, L. G., Norbertczak, H. T., Besra, G. S., Quail, M. A. & other authors ( 2003; ). Sequencing and analysis of the genome of the Whipple's disease bacterium Tropheryma whipplei. Lancet 361, 637–644.[CrossRef]
    [Google Scholar]
  6. Binnewies, T. T., Motro, Y., Hallin, P. F., Lund, O., Dunn, D., La, T., Hampson, D. J., Bellgard, M., Wassenaar, T. M. & Ussery, D. W. ( 2006; ). Ten years of bacterial genome sequencing: comparative-genomics-based discoveries. Funct Integr Genomics 6, 165–185.[CrossRef]
    [Google Scholar]
  7. Blattner, F. R., Plunkett, G., III, Bloch, C. A., Perna, N. T., Burland, V., Riley, M., Collado-Vides, J., Glasner, J. D., Rode, C. K. & other authors ( 1997; ). The complete genome sequence of Escherichia coli K-12. Science 277, 1453–1474.[CrossRef]
    [Google Scholar]
  8. Bonneau, R., Reiss, D. J., Shannon, P., Facciotti, M., Hood, L., Baliga, N. S. & Thorsson, V. ( 2006; ). The Inferelator: an algorithm for learning parsimonious regulatory networks from systems-biology data sets de novo. Genome Biol 7, R36 [CrossRef]
    [Google Scholar]
  9. Bult, C. J., White, O., Olsen, G. J., Zhou, L., Fleischmann, R. D., Sutton, G. G., Blake, J. A., FitzGerald, L. M., Clayton, R. A. & other authors ( 1996; ). Complete genome sequence of the methanogenic archaeon, Methanococcus jannaschii. Science 273, 1058–1073.[CrossRef]
    [Google Scholar]
  10. Carapito, C., Muller, D., Turlin, E., Koechler, S., Danchin, A., Van Dorsselaer, A., Leize-Wagner, E., Bertin, P. N. & Lett, M. C. ( 2006; ). Identification of genes and proteins involved in the pleiotropic response to arsenic stress in Caenibacter arsenoxydans, a metalloresistant beta-proteobacterium with an unsequenced genome. Biochimie 88, 595–606.[CrossRef]
    [Google Scholar]
  11. Caspi, R., Foerster, H., Fulcher, C. A., Hopkinson, R., Ingraham, J., Kaipa, P., Krummenacker, M., Paley, S., Pick, J. & other authors ( 2006; ). MetaCyc: a multiorganism database of metabolic pathways and enzymes. Nucleic Acids Res 34, D511–D516.[CrossRef]
    [Google Scholar]
  12. Chen, Z., Terai, M., Fu, L., Herrero, R., DeSalle, R. & Burk, R. D. ( 2005; ). Diversifying selection in human papillomavirus type 16 lineages based on complete genome analyses. J Virol 79, 7014–7023.[CrossRef]
    [Google Scholar]
  13. Cole, S. T., Eiglmeier, K., Parkhill, J., James, K. D., Thomson, N. R., Wheeler, P. R., Honoré, N., Garnier, T., Churcher, C. & other authors ( 2001; ). Massive gene decay in the leprosy bacillus. Nature 409, 1007–1011.[CrossRef]
    [Google Scholar]
  14. Collyn, F., Guy, L., Marceau, M., Simonet, M. & Roten, C. A. ( 2006; ). Describing ancient horizontal gene transfers at the nucleotide and gene levels by comparative pathogenicity island genometrics. Bioinformatics 22, 1072–1079.[CrossRef]
    [Google Scholar]
  15. Dary, A., Martin, P., Wenner, T., Decaris, B. & Leblond, P. ( 2000; ). DNA rearrangements at the extremities of the Streptomyces ambofaciens linear chromosome: evidence for developmental control. Biochimie 82, 29–34.[CrossRef]
    [Google Scholar]
  16. Daubin, V., Lerat, E. & Perriere, G. ( 2003; ). The source of laterally transferred genes in bacterial genomes. Genome Biol 4, R57 [CrossRef]
    [Google Scholar]
  17. Delneri, D., Brancia, F. L. & Oliver, S. G. ( 2001; ). Towards a truly integrative biology through the functional genomics of yeast. Curr Opin Biotechnol 12, 87–91.[CrossRef]
    [Google Scholar]
  18. DeLong, E. F., Preston, C. M., Mincer, T., Rich, V., Hallam, S. J., Frigaard, N. U., Martinez, A., Sullivan, M. B., Edwards, R. & other authors ( 2006; ). Community genomics among stratified microbial assemblages in the ocean's interior. Science 311, 496–503.[CrossRef]
    [Google Scholar]
  19. Demirjian, D. C., Moris-Varas, F. & Cassidy, C. S. ( 2001; ). Enzymes from extremophiles. Curr Opin Chem Biol 5, 144–151.[CrossRef]
    [Google Scholar]
  20. Dennis, P., Edwards, E. A., Liss, S. N. & Fulthorpe, R. ( 2003; ). Monitoring gene expression in mixed microbial communities by using DNA microarrays. Appl Environ Microbiol 69, 769–778.[CrossRef]
    [Google Scholar]
  21. Dharmadi, Y. & Gonzalez, R. ( 2004; ). DNA microarrays: experimental issues, data analysis, and application to bacterial systems. Biotechnol Prog 20, 1309–1324.[CrossRef]
    [Google Scholar]
  22. Ettema, T. J. G., de Vos, W. M. & van der Oost, J. ( 2005; ). Discovering novel biology by in silico archaeology. Nat Rev Microbiol 3, 859–869.[CrossRef]
    [Google Scholar]
  23. Ferrer, M., Golyshina, O. V., Beloqui, A., Golyshin, P. N. & Timmis, K. N. ( 2007; ). The cellular machinery of Ferroplasma acidiphilum is iron-protein-dominated. Nature 445, 91–94.[CrossRef]
    [Google Scholar]
  24. Fleischmann, R. D., Adams, M. D., White, O., Clayton, R. A., Kirkness, E. F., Kerlavage, A. R., Bult, C. J., Tomb, J. F., Dougherty, B. A. & other authors ( 1995; ). Whole-genome random sequencing and assembly of Haemophilus influenzae Rd. Science 269, 496–512.[CrossRef]
    [Google Scholar]
  25. Foerstner, K. U., Von Mering, C. & Bork, P. ( 2006; ). Comparative analysis of environmental sequences: potential and challenges. Philos Trans R Soc Lond B Biol Sci 361, 519–523.[CrossRef]
    [Google Scholar]
  26. Frangeul, L., Nelson, K. E., Buchreiser, C., Danchin, A., Glaser, P. & Kunst, F. ( 1999; ). Cloning and assembling strategies in microbial genome projects. Microbiology 145, 2625–2634.
    [Google Scholar]
  27. Ghaemmaghami, S., Huh, W. K., Bower, K., Howson, R. W., Belle, A., Dephoure, N., O'Shea, E. K. & Weissman, J. S. ( 2003; ). Global analysis of protein expression in yeast. Nature 425, 737–741.[CrossRef]
    [Google Scholar]
  28. Giraud, E., Moulin, L., Vallenet, D., Barbe, V., Cytryn, E., Avarre, J. C., Jaubert, M., Simon, D., Cartieaux, F. & other authors ( 2007; ). Legumes symbioses: absence of nod genes in photosynthetic bradyrhizobia. Science 316, 1307–1312.[CrossRef]
    [Google Scholar]
  29. Goffeau, A., Barrell, B. G., Bussey, H., Davis, R. W., Dujon, B., Feldmann, H., Galibert, F., Hoheisel, J. D., Jacq, C. & other authors ( 1996; ). Life with 6000 genes. Science 274, 563–567.
    [Google Scholar]
  30. Green, E. D. ( 2001; ). Strategies for the systematic sequencing of complex genomes. Nat Rev Genet 2, 573–583.
    [Google Scholar]
  31. Hardouin, J., Duchateau, M., Joubert-Caron, R. & Caron, M. ( 2006; ). Usefulness of an integrated microfluidic device (HPLC-Chip-MS) to enhance confidence in protein identification by proteomics. Rapid Commun Mass Spectrom 20, 3236–3244.[CrossRef]
    [Google Scholar]
  32. Hecker, M. & Volker, U. ( 2004; ). Towards a comprehensive understanding of Bacillus subtilis cell physiology by physiological proteomics. Proteomics 4, 3727–3750.[CrossRef]
    [Google Scholar]
  33. Hirochika, H., Nakamura, K. & Sakaguchi, K. ( 1984; ). A linear DNA plasmid from Streptomyces rochei with an inverted terminal repetition of 614 base pairs. EMBO J 3, 761–766.
    [Google Scholar]
  34. Hollywood, K., Brison, D. R. & Goodacre, R. ( 2006; ). Metabolomics: current technologies and future trends. Proteomics 6, 4716–4723.[CrossRef]
    [Google Scholar]
  35. Holt, J. G., Krieg, N. R., Sneath, P. H. A., Staley, J. T. & Williams, S. T. ( 1994; ). Bergey's Manual of Determinative Bacteriology, 9th edn. Baltimore: Williams & Wilkins.
  36. Hou, S., Saw, J. H., Lee, K. S., Freitas, T. A., Belisle, C., Kawarabayasi, Y., Donachie, S. P., Pikina, A., Galperin, M. Y. & other authors ( 2004; ). Genome sequence of the deep-sea gamma-proteobacterium Idiomarina loihiensis reveals amino acid fermentation as a source of carbon and energy. Proc Natl Acad Sci U S A 101, 18036–18041.[CrossRef]
    [Google Scholar]
  37. Jenner, R. G. & Young, R. A. ( 2005; ). Insights into host responses against pathogens from transcriptional profiling. Nat Rev Microbiol 3, 281–294.[CrossRef]
    [Google Scholar]
  38. Jungblut, P. R. ( 2001; ). Proteome analysis of bacterial pathogens. Microbes Infect 3, 831–840.[CrossRef]
    [Google Scholar]
  39. Kahn, P. ( 1995; ). From genome to proteome: looking at a cell's proteins. Science 270, 369–370.[CrossRef]
    [Google Scholar]
  40. Kan, J., Hanson, T. E., Ginter, J. M., Wang, K. & Chen, F. ( 2005; ). Metaproteomic analysis of Chesapeake Bay microbial communities. Saline Systems 1, 7 [CrossRef]
    [Google Scholar]
  41. Kanehisa, M., Goto, S., Hattori, M., Aoki-Kinoshita, K. F., Itoh, M., Kawashima, S., Katayama, T., Araki, M. & Hirakawa, M. ( 2006; ). From genomics to chemical genomics: new developments in KEGG. Nucleic Acids Res 34, D354–D357.[CrossRef]
    [Google Scholar]
  42. Kay, E., Dubuis, C. & Haas, D. ( 2005; ). Three small RNAs jointly ensure secondary metabolism and biocontrol in Pseudomonas fluorescens CHA0. Proc Natl Acad Sci U S A 102, 17136–17141.[CrossRef]
    [Google Scholar]
  43. Kell, D. B., Brown, M., Davey, H. M., Dunn, W. B., Spasic, I. & Oliver, S. G. ( 2005; ). Metabolic footprinting and systems biology: the medium is the message. Nat Rev Microbiol 3, 557–565.[CrossRef]
    [Google Scholar]
  44. Kim, S. T., Kim, S. G., Hwang, D. H., Kang, S. Y., Kim, H. J., Lee, B. H., Lee, J. J. & Kang, K. Y. ( 2004; ). Proteomic analysis of pathogen-responsive proteins from rice leaves induced by rice blast fungus, Magnaporthe grisea. Proteomics 4, 3569–3578.[CrossRef]
    [Google Scholar]
  45. Kimura, M. ( 1979; ). The neutral theory of molecular evolution. Sci Am 241, 98–100.[CrossRef]
    [Google Scholar]
  46. Krummenacker, M., Paley, S., Mueller, L., Yan, T. & Karp, P. D. ( 2005; ). Querying and computing with BioCyc databases. Bioinformatics 21, 3454–3455.[CrossRef]
    [Google Scholar]
  47. Kunst, F., Ogasawara, N., Moszer, I., Albertini, A. M., Alloni, G., Azevedo, V., Bertero, M. G., Bessières, P., Bolotin, A. & other authors ( 1997; ). The complete genome sequence of the Gram-positive bacterium Bacillus subtilis. Nature 390, 249–256.[CrossRef]
    [Google Scholar]
  48. Lacerda, C. M. R., Choe, L. H. & Reardon, K. F. ( 2007; ). Metaproteomic analysis of a bacterial community response to cadmium exposure. J Proteome Res 6, 1145–1152.[CrossRef]
    [Google Scholar]
  49. Lin, Y. S., Kieser, H. M., Hopwood, D. A. & Chen, C. W. ( 1993; ). The chromosomal DNA of Streptomyces lividans 66 is linear. Mol Microbiol 10, 923–933.[CrossRef]
    [Google Scholar]
  50. Liu, Z., Bos, J. I., Armstrong, M., Whisson, S. C., da Cunha, L., Torto-Alalibo, T., Win, J., Avrova, A. O., Wright, F. & other authors ( 2005; ). Patterns of diversifying selection in the phytotoxin-like scr74 gene family of Phytophthora infestans. Mol Biol Evol 22, 659–672.
    [Google Scholar]
  51. Lorenz, P. & Eck, J. ( 2005; ). Metagenomics and industrial applications. Nat Rev Microbiol 3, 510–516.[CrossRef]
    [Google Scholar]
  52. Maltsev, N., Glass, E., Sulakhe, D., Rodriguez, A., Syed, M. H., Bompada, T., Zhang, Y. & D'Souza, M. ( 2006; ). PUMA2 – grid-based high-throughput analysis of genomes and metabolic pathways. Nucleic Acids Res 34, D369–D372.[CrossRef]
    [Google Scholar]
  53. Massé, E. & Gottesman, S. ( 2002; ). A small RNA regulates the expression of genes involved in iron metabolism in Escherichia coli. Proc Natl Acad Sci U S A 99, 4620–4625.[CrossRef]
    [Google Scholar]
  54. Matsuzaki, M., Misumi, O., Shin-I, T., Maruyama, S., Takahara, M., Miyagishima, S. Y., Mori, T., Nishida, K., Yagisawa, F. & other authors ( 2004; ). Genome sequence of the ultrasmall unicellular red alga Cyanidioschyzon merolae 10D. Nature 428, 653–657.[CrossRef]
    [Google Scholar]
  55. Medini, D., Donati, C., Tettelin, H., Masignani, V. & Rappuoli, R. ( 2005; ). The microbial pan-genome. Curr Opin Genet Dev 15, 589–594.[CrossRef]
    [Google Scholar]
  56. Muller, D., Médigue, C., Koechler, S., Barbe, V., Barakat, M., Talla, E., Bonnefoy, V., Krin, E., Arsène-Ploetze, F. & other authors ( 2007; ). A tale of two oxidation states: bacterial colonization of arsenic-rich environment. PloS Genet 3, e53 [CrossRef]
    [Google Scholar]
  57. Mushegian, A. R. & Koonin, E. V. ( 1996; ). A minimal gene set for cellular life derived by comparison of complete bacterial genomes. Proc Natl Acad Sci U S A 93, 10268–10273.[CrossRef]
    [Google Scholar]
  58. Nadon, R. & Shoemaker, J. ( 2002; ). Statistical issues with microarrays: processing and analysis. Trends Genet 18, 265–271.[CrossRef]
    [Google Scholar]
  59. Nakabachi, A., Yamashita, A., Toh, H., Ishikawa, H., Dunbar, H. E., Moran, N. A. & Hattori, M. ( 2006; ). The 160-kilobase genome of the bacterial endosymbiont Carsonella. Science 314, 267 [CrossRef]
    [Google Scholar]
  60. Nirenberg, M. W. & Matthaei, J. H. ( 1961; ). The dependence of cell-free protein synthesis in E. coli upon naturally occurring or synthetic polyribonucleotides. Proc Natl Acad Sci U S A 47, 1588–1602.[CrossRef]
    [Google Scholar]
  61. Normand, P., Lapierre, P., Tisa, L. S., Gogarten, J. P., Alloisio, N., Bagnarol, E., Bassi, C. A., Berry, A. M., Bickhart, D. M. & other authors ( 2007; ). Genome characteristics of facultatively symbiotic Frankia sp. strains reflect host range and host plant biogeography. Genome Res 17, 7–15.
    [Google Scholar]
  62. Ogata, H., Audic, S., Renesto-Audiffren, P., Fournier, P. E., Barbe, V., Samson, D., Roux, V., Cossart, P., Weissenbach, J. & other authors ( 2001; ). Mechanisms of evolution in Rickettsia conorii and R. prowazekii. Science 293, 2093–2098.[CrossRef]
    [Google Scholar]
  63. Oliynyk, M., Samborskyy, M., Lester, J. B., Mironenko, T., Scott, N., Dickens, S., Haydock, S. F. & Leadlay, P. F. ( 2007; ). Complete genome sequence of the erythromycin-producing bacterium Saccharopolyspora erythraea NRRL23338. Nat Biotechnol 25, 447–453.[CrossRef]
    [Google Scholar]
  64. Opperdoes, F. R. & Coombs, G. H. ( 2007; ). Metabolism of Leishmania: proven and predicted. Trends Parasitol 23, 149–158.[CrossRef]
    [Google Scholar]
  65. Ou, K., Ong, C., Koh, S. Y., Rodrigues, F., Sim, S. H., Wong, D., Ooi, C. H., Ng, K. C., Jikuya, H. & other authors ( 2005; ). Integrative genomic, transcriptional, and proteomic diversity in natural isolates of the human pathogen Burkholderia pseudomallei. J Bacteriol 187, 4276–4285.[CrossRef]
    [Google Scholar]
  66. Parales, R. E. & Ditty, J. L. ( 2005; ). Laboratory evolution of catabolic enzymes and pathways. Curr Opin Biotechnol 16, 315–325.[CrossRef]
    [Google Scholar]
  67. Paulsen, I. T., Press, C. M., Ravel, J., Kobayashi, D. Y., Myers, G. S., Mavrodi, D. V., DeBoy, R. T., Seshadri, R., Ren, Q. & other authors ( 2005; ). Complete genome sequence of the plant commensal Pseudomonas fluorescens Pf-5. Nat Biotechnol 23, 873–878.[CrossRef]
    [Google Scholar]
  68. Pradella, S., Hans, A., Sproer, C., Reichenbach, H., Gerth, K. & Beyer, S. ( 2002; ). Characterisation, genome size and genetic manipulation of the myxobacterium Sorangium cellulosum So ce56. Arch Microbiol 178, 484–492.[CrossRef]
    [Google Scholar]
  69. Pu, S., Vlasblom, J., Emili, A., Greenblatt, J. & Wodak, S. J. ( 2007; ). Identifying functional modules in the physical interactome of Saccharomyces cerevisiae. Proteomics 7, 944–960.[CrossRef]
    [Google Scholar]
  70. Qiu, X., Tiedje, J. M. & Sundin, G. W. ( 2005; ). Genome-wide examination of the natural solar radiation response in Shewanella oneidensis MR-1. Photochem Photobiol 81, 1559–1568.[CrossRef]
    [Google Scholar]
  71. Rabilloud, T. ( 2002; ). Two-dimensional gel electrophoresis in proteomics: old, old fashioned, but it still climbs up the mountains. Proteomics 2, 3–10.[CrossRef]
    [Google Scholar]
  72. Ronaghi, M. ( 2001; ). Pyrosequencing sheds light on DNA sequencing. Genome Res 11, 3–11.[CrossRef]
    [Google Scholar]
  73. Rusch, D. B., Halpern, A. L., Sutton, G., Heidelberg, K. B., Williamson, S., Yooseph, S., Wu, D., Eisen, J. A., Hoffman, J. M. & other authors ( 2007; ). The Sorcerer II Global Ocean Sampling expedition: northwest Atlantic through eastern tropical Pacific. PLoS Biol 5, e77 [CrossRef]
    [Google Scholar]
  74. Sanger, F., Nicklen, S. & Coulson, A. R. ( 1977; ). DNA sequencing with chain-terminating inhibitors. Proc Natl Acad Sci U S A 74, 5463–5467.[CrossRef]
    [Google Scholar]
  75. Saunders, N. F. W., Goodchild, A., Raftery, M., Guilhaus, M., Curmi, P. M. G. & Cavicchioli, R. ( 2005; ). Predicted roles for hypothetical proteins in the low-temperature expressed proteome of the Antarctic archaeon Methanococcoides burtonii. J Proteome Res 4, 464–472.[CrossRef]
    [Google Scholar]
  76. Servant, F., Bru, C., Carrere, S., Courcelle, E., Gouzy, J., Peyruc, D. & Kahn, D. ( 2002; ). ProDom: automated clustering of homologous domains. Brief Bioinform 3, 246–251.[CrossRef]
    [Google Scholar]
  77. Shigenobu, S., Watanabe, H., Hattori, M., Sakaki, Y. & Ishikawa, H. ( 2000; ). Genome sequence of the endocellular bacterial symbiont of aphids Buchnera sp. APS. Nature 407, 81–86.[CrossRef]
    [Google Scholar]
  78. Sivachenko, A. Y. & Yuryev, A. ( 2007; ). Pathway analysis software as a tool for drug target selection, prioritization and validation of drug mechanism. Expert Opin Ther Targets 11, 411–421.[CrossRef]
    [Google Scholar]
  79. Streit, W. R. & Schmitz, R. A. ( 2004; ). Metagenomics – the key to the uncultured microbes. Curr Opin Microbiol 7, 492–498.[CrossRef]
    [Google Scholar]
  80. Strous, M., Pelletier, E., Mangenot, S., Rattei, T., Lehner, A., Taylor, M. W., Horn, M., Daims, H., Bartol-Mavel, D. & other authors ( 2006; ). Deciphering the evolution and metabolism of an anammox bacterium from a community genome. Nature 440, 790–794.[CrossRef]
    [Google Scholar]
  81. Thomson, N. R., Howard, S., Wren, B. W., Holden, M. T., Crossman, L., Challis, G. L., Churcher, C., Mungall, K., Brooks, K. & other authors ( 2006; ). The complete genome sequence and comparative genome analysis of the high pathogenicity Yersinia enterocolitica strain 8081. PLoS Genet 2, e206 [CrossRef]
    [Google Scholar]
  82. Tyson, G. W., Chapman, J., Hugenholtz, P., Allen, E. E., Ram, R. J., Richardson, P. M., Solovyev, V. V., Rubin, E. M., Rokhsar, D. S. & Banfield, J. F. ( 2004; ). Community structure and metabolism through reconstruction of microbial genomes from the environment. Nature 428, 37–43.[CrossRef]
    [Google Scholar]
  83. Vallenet, D., Labarre, L., Rouy, Z., Barbe, V., Bocs, S., Cruveiller, S., Lajus, A., Pascal, G., Scarpelli, C. & Médigue, C. ( 2006; ). MaGe: a microbial genome annotation system supported by synteny results. Nucleic Acids Res 34, 53–65.[CrossRef]
    [Google Scholar]
  84. Velculescu, V. E., Zhang, L., Zhou, W., Vogelstein, J., Basrai, M. A., Bassett, D. E., Jr, Hieter, P., Vogelstein, B. & Kinzler, K. W. ( 1997; ). Characterization of the yeast transcriptome. Cell 88, 243–251.[CrossRef]
    [Google Scholar]
  85. Vezzi, A., Campanaro, S., D'Angelo, M., Simonato, F., Vitulo, N., Lauro, F. M., Cestaro, A., Malacrida, G., Simionati, B. & other authors ( 2005; ). Life at depth: Photobacterium profundum genome sequence and expression analysis. Science 307, 1459–1461.[CrossRef]
    [Google Scholar]
  86. Wan, X.-F., Verberkmoes, N. C., McCue, L. A., Stanek, D., Connelly, H., Hauser, L. J., Wu, L., Liu, X., Yan, T. & other authors ( 2004; ). Transcriptomic and proteomic characterization of the Fur modulon in the metal-reducing bacterium Shewanella oneidensis. J Bacteriol 186, 8385–8400.[CrossRef]
    [Google Scholar]
  87. Watson, J. D. & Cook-Deegan, R. M. ( 1991; ). Origins of the human genome project. FASEB J 5, 8–11.
    [Google Scholar]
  88. Watson, J. D. & Crick, F. H. C. ( 1953; ). A structure for deoxyribose nucleic acid. Nature 171, 737–738.[CrossRef]
    [Google Scholar]
  89. Wilmes, P. & Bond, P. L. ( 2004; ). The application of two-dimensional polyacrylamide gel electrophoresis and downstream analyses to a mixed community of prokaryotic microorganisms. Environ Microbiol 6, 911–920.[CrossRef]
    [Google Scholar]
  90. Woyke, T., Teeling, H., Ivanova, N. N., Huntemann, M., Richter, M., Gloeckner, F. O., Boffelli, D., Anderson, I. J., Barry, K. W. & other authors ( 2006; ). Symbiosis insights through metagenomic analysis of a microbial consortium. Nature 443, 950–955.[CrossRef]
    [Google Scholar]
  91. Zylstra, G. J. & Kukor, J. J. ( 2005; ). What is environmental biotechnology? Curr Opin Biotechnol 16, 243–245.[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.2007/011791-0
Loading
/content/journal/micro/10.1099/mic.0.2007/011791-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error