1887

Abstract

The () gene of , the agent of Lyme disease, encodes a surface-exposed lipoprotein. The expression of is tightly regulated and dependent on several environmental factors. In nature, its expression is induced in the tick vector during feeding and maintained during infection of the vertebrate host. The pattern of expression of suggests that it imparts a critical function to the pathogen. A previous study has shown that the expression of is down-regulated in the absence of RpoS, suggesting that the alternative sigma factor may be involved in its expression. A DNA-binding protein has also been shown to specifically recognize a sequence in the 5′ regulatory region of the gene. Therefore, the contribution of these putative determinants to the differential expression of was investigated. The role of RpoS was critically evaluated by genetic complementation of the mutant using a chromosomally targeted copy of the wild-type gene. The results confirm that RpoS is indeed required for the expression of . The role of the upstream DNA-binding site was examined using promoter– transcriptional fusions in a shuttle vector. The DNA-binding site was studied by targeting mutations to an inverted repeat sequence (IRS), the most prominent feature within the binding site, as well as by deletion of the entire sequence upstream of the basal promoter. Quantitative assessment of gene expression demonstrated that neither the IRS nor the sequence upstream of the promoter was essential for expression. Moreover, the expression of the reporter (GFP) appeared to remain RpoS-dependent in all cases, based on the co-expression of GFP and OspC in a subpopulation of spirochaetes and the selective expression of GFP in the stationary phase. Collectively, the data indicate that RpoS is the sole determinant of differential expression in cultured spirochaetes.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.2007/011676-0
2008-01-01
2019-10-19
Loading full text...

Full text loading...

/deliver/fulltext/micro/154/1/275.html?itemId=/content/journal/micro/10.1099/mic.0.2007/011676-0&mimeType=html&fmt=ahah

References

  1. Anguita, J., Samanta, S., Revilla, B., Suk, K., Das, S., Barthold, S. W. & Fikrig, E. ( 2000; ). Borrelia burgdorferi gene expression in vivo and spirochete pathogenicity. Infect Immun 68, 1222–1230.[CrossRef]
    [Google Scholar]
  2. Barbour, A. G. & Garon, C. F. ( 1987; ). Linear plasmids of the bacterium Borrelia burgdorferi have covalently closed ends. Science 237, 409–411.[CrossRef]
    [Google Scholar]
  3. Brooks, C. S., Hefty, P., Scott, J., Sarah, E. & Akins, D. R. ( 2003; ). Global analysis of Borrelia burgdorferi genes regulated by mammalian host-specific signals. Infect Immun 71, 3371–3383.[CrossRef]
    [Google Scholar]
  4. Brooks, C. S., Vuppula, S. R., Jett, A. M., Alitalo, A., Meri, S. & Akins, D. R. ( 2005; ). Complement regulator-acquiring surface protein 1 imparts resistance to human serum in Borrelia burgdorferi. J Immunol 175, 3299–3308.[CrossRef]
    [Google Scholar]
  5. Brooks, C. S., Vuppala, S. R., Jett, A. M. & Akins, D. R. ( 2006; ). Identification of Borrelia burgdorferi outer surface proteins. Infect Immun 74, 296–304.[CrossRef]
    [Google Scholar]
  6. Caimano, M. J., Eggers, C. H., Gonzales, C. A. & Radolf, J. D. ( 2005; ). Alternate sigma factor RpoS is required for the in vivo-specific repression of Borrelia burgdorferi plasmid lp54-borne ospA and lp6.6 genes. J Bacteriol 187, 7845–7852.[CrossRef]
    [Google Scholar]
  7. Carroll, J. A., Cordova, R. M. & Garon, C. F. ( 2000; ). Identification of 11 pH-regulated genes in Borrelia burgdorferi localizing to linear plasmids. Infect Immun 68, 6677–6684.[CrossRef]
    [Google Scholar]
  8. Carroll, J. A., Stewart, P. E., Rosa, P., Elias, A. F. & Garon, C. F. ( 2003; ). An enhanced GFP reporter system to monitor gene expression in Borrelia burgdorferi. Microbiology 149, 1819–1828.[CrossRef]
    [Google Scholar]
  9. Casjens, S., Palmer, N., van Vugt, R., Huang, W. M., Stevenson, B., Rosa, P., Lathigra, R., Sutton, G., Peterson, J. & other authors ( 2000; ). A bacterial genome in flux: the twelve linear and nine circular extrachromosomal DNAs in an infectious isolate of the Lyme disease spirochaete Borrelia burgdorferi. Mol Microbiol 35, 490–516.
    [Google Scholar]
  10. Clifton, D. R., Nolder, C. L., Hughes, J. L., Nowalk, A. J. & Carroll, J. A. ( 2006; ). Regulation and expression of bba66 encoding an immunogenic infection-associated lipoprotein in Borrelia burgdorferi. Mol Microbiol 61, 243–258.[CrossRef]
    [Google Scholar]
  11. Earnhart, C. G., Buckles, E. L. & Marconi, R. T. ( 2007; ). Development of an OspC-based tetravalent, recombinant, chimeric vaccinogen that elicits bactericidal antibody against diverse Lyme disease spirochete strains. Vaccine 25, 466–480.[CrossRef]
    [Google Scholar]
  12. Elias, A. F., Stewart, P. E., Grimm, D., Caimano, M. J., Eggers, C. H., Tilly, K., Bono, J. L., Akins, D. R., Radolf, J. D. & other authors ( 2002; ). Clonal polymorphism of Borrelia burgdorferi strain B31 MI: implications for mutagenesis in an infectious strain background. Infect Immun 70, 2139–2150.[CrossRef]
    [Google Scholar]
  13. Elias, A. F., Bono, J. L., Kupko, J. J., 3rd, Stewart, P. E., Krum, J. G. & Rosa, P. A. ( 2003; ). New antibiotic resistance cassettes suitable for genetic studies in Borrelia burgdorferi. J Mol Microbiol Biotechnol 6, 29–40.[CrossRef]
    [Google Scholar]
  14. Fisher, M. A., Grimm, D., Henion, A. K., Elias, A. F., Stewart, P. E., Rosa, P. A. & Gherardini, F. C. ( 2005; ). Borrelia burgdorferi σ 54 is required for mammalian infection and vector transmission but not for tick colonization. Proc Natl Acad Sci U S A 102, 5162–5167.[CrossRef]
    [Google Scholar]
  15. Frank, K. L., Bundle, S. F., Kresge, M. E., Eggers, C. H. & Samuels, D. S. ( 2003; ). aadA confers streptomycin resistance in Borrelia burgdorferi. J Bacteriol 185, 6723–6727.[CrossRef]
    [Google Scholar]
  16. Fraser, C. M., Casjens, S., Huang, W. M., Sutton, G. G., Clayton, R., Lathigra, R., White, O., Ketchum, K. A., Dodson, R. & other authors ( 1997; ). Genomic sequence of a Lyme disease spirochaete, Borrelia burgdorferi. Nature 390, 580–586.[CrossRef]
    [Google Scholar]
  17. Gilmore, R. D., Jr, Kappel, K. J., Jr & Johnson, B. J. ( 1997; ). Molecular characterization of a 35-kilodalton protein of Borrelia burgdorferi, an antigen of diagnostic importance in early Lyme disease. J Clin Microbiol 35, 86–91.
    [Google Scholar]
  18. Gilmore, R. D., Jr, Mbow, M. L. & Stevenson, B. ( 2001; ). Analysis of Borrelia burgdorferi gene expression during life cycle phases of the tick vector Ixodes scapularis. Microbes Infect 3, 799–808.[CrossRef]
    [Google Scholar]
  19. Gilmore, R. D., Jr, Howison, R. R., Schmit, V. L., Nowalk, A. J., Clifton, D. R., Nolder, C., Hughes, J. L. & Carroll, J. A. ( 2007; ). Temporal expression analysis of the Borrelia burgdorferi paralogous gene family 54 genes BBA64, BBA65, and BBA66 during persistent infection in mice. Infect Immun 75, 2753–2764.[CrossRef]
    [Google Scholar]
  20. Grimm, D., Eggers, C. H., Caimano, M. J., Tilly, K., Stewart, P. E., Elias, A. F., Radolf, J. D. & Rosa, P. A. ( 2004; ). Experimental assessment of the roles of linear plasmids lp25 and lp28-1 of Borrelia burgdorferi throughout the infectious cycle. Infect Immun 72, 5938–5946.[CrossRef]
    [Google Scholar]
  21. Hagman, K. E., Lahdenne, P., Popova, T. G., Porcella, S. F., Akins, D. R., Radolf, J. D. & Norgard, M. V. ( 1998; ). Decorin-binding protein is encoded within a two-gene operon and is protective in the murine model of Lyme borreliosis. Infect Immun 66, 2674–2683.
    [Google Scholar]
  22. Hübner, A., Yang, X., Nolen, D. M., Popova, T. G., Cabello, F. C. & Norgard, M. V. ( 2001; ). Expression of Borrelia burgdorferi OspC and DbpA is controlled by a RpoN-RpoS regulatory pathway. Proc Natl Acad Sci U S A 98, 12724–12729.[CrossRef]
    [Google Scholar]
  23. Indest, K. J. & Philipp, M. T. ( 2000; ). DNA-binding proteins possibly involved in regulation of the post-logarithmic-phase expression of lipoprotein P35 in Borrelia burgdorferi. J Bacteriol 182, 522–525.[CrossRef]
    [Google Scholar]
  24. Indest, K. J., Ramamoorthy, R., Sole, M., Gilmore, R. D., Johnson, B. J. & Philipp, M. T. ( 1997; ). Cell-density-dependent expression of Borrelia burgdorferi lipoproteins in vitro. Infect Immun 65, 1165–1171.
    [Google Scholar]
  25. Kawabata, H., Norris, S. J. & Watanabe, H. ( 2004; ). BBE02 disruption mutants of Borrelia burgdorferi B31 have a highly transformable, infectious phenotype. Infect Immun 72, 7147–7154.[CrossRef]
    [Google Scholar]
  26. Kraiczy, P., Hellwage, J., Skerka, C., Becker, H., Kirschfink, M., Simon, M. M., Brade, V., Zipfel, P. F. & Wallich, R. ( 2004; ). Complement resistance of Borrelia burgdorferi correlates with the expression of BbCRASP-1, a novel linear plasmid-encoded surface protein that interacts with human factor H and FHL-1 and is unrelated to Erp proteins. J Biol Chem 279, 2421–2429.[CrossRef]
    [Google Scholar]
  27. Labandeira-Rey, M. & Skare, J. T. ( 2001; ). Decreased infectivity in Borrelia burgdorferi strain B31 is associated with loss of linear plasmid lp25 or lp28-1. Infect Immun 69, 446–455.[CrossRef]
    [Google Scholar]
  28. Liang, F. T., Nelson, F. K. & Fikrig, E. ( 2002; ). DNA microarray assessment of putative Borrelia burgdorferi lipoprotein genes. Infect Immun 70, 3300–3303.[CrossRef]
    [Google Scholar]
  29. Mbow, M. L., Gilmore, R. D., Jr & Titus, R. G. ( 1999; ). An OspC-specific monoclonal antibody passively protects mice from tick-transmitted infection by Borrelia burgdorferi B31. Infect Immun 67, 5470–5472.
    [Google Scholar]
  30. McDowell, J. V., Harlin, M. E., Rogers, E. A. & Marconi, R. T. ( 2005; ). Putative coiled-coil structural elements of the BBA68 protein of Lyme disease spirochetes are required for formation of its factor H binding site. J Bacteriol 187, 1317–1323.[CrossRef]
    [Google Scholar]
  31. McDowell, J. V., Hovis, K. M., Zhang, H., Tran, E., Lankford, J. & Marconi, R. T. ( 2006; ). Evidence that the BBA68 protein (BbCRASP-1) of the Lyme disease spirochetes does not contribute to factor H-mediated immune evasion in humans and other animals. Infect Immun 74, 3030–3034.[CrossRef]
    [Google Scholar]
  32. Nowalk, A. J., Gilmore, R. D., Jr & Carroll, J. A. ( 2006; ). Serologic proteome analysis of Borrelia burgdorferi membrane-associated proteins. Infect Immun 74, 3864–3873.[CrossRef]
    [Google Scholar]
  33. Ojaimi, C., Brooks, C., Casjens, S., Rosa, P., Elias, A., Barour, A., Jasinskas, A., Benach, J., Katona, L. & other authors ( 2003; ). Profiling of temperature-induced changes in Borrelia burgdorferi gene expression by using whole genome arrays. Infect Immun 71, 1689–1705.[CrossRef]
    [Google Scholar]
  34. Purser, J. E. & Norris, S. J. ( 2000; ). Correlation between plasmid content and infectivity in Borrelia burgdorferi. Proc Natl Acad Sci U S A 97, 13865–13870.[CrossRef]
    [Google Scholar]
  35. Ramamoorthy, R. & Philipp, M. T. ( 1998; ). Differential expression of Borrelia burgdorferi proteins during growth in vitro. Infect Immun 66, 5119–5124.
    [Google Scholar]
  36. Ramamoorthy, R. & Scholl-Meeker, D. ( 2001; ). Borrelia burgdorferi proteins whose expression is similarly affected by culture temperature and pH. Infect Immun 69, 2739–2742.[CrossRef]
    [Google Scholar]
  37. Ramamoorthy, R., Povinelli, L. & Philipp, M. T. ( 1996; ). Molecular characterization, genomic arrangement, and expression of bmpD, a new member of the bmp class of genes encoding membrane proteins of Borrelia burgdorferi. Infect Immun 64, 1259–1264.
    [Google Scholar]
  38. Ramamoorthy, R., McClain, N. A., Gautam, A. & Scholl-Meeker, D. ( 2005; ). Expression of the bmpB gene of Borrelia burgdorferi is modulated by two distinct transcription termination events. J Bacteriol 187, 2592–2600.[CrossRef]
    [Google Scholar]
  39. Revel, A. T., Talaat, A. M. & Norgard, M. V. ( 2002; ). DNA microarray analysis of differential gene expression in Borrelia burgdorferi, the Lyme disease spirochaete. Proc Natl Acad Sci U S A 99, 1562–1567.[CrossRef]
    [Google Scholar]
  40. Samuels, D. S. ( 1995; ). Electrotransformation of the spirochete Borrelia burgdorferi. Methods Mol Biol 47, 253–259.
    [Google Scholar]
  41. Schwan, T. G. & Piesman, J. ( 2000; ). Temporal changes in outer surface proteins A and C of the Lyme disease-associated spirochete Borrelia burgdorferi, during the chain of infection in ticks and mice. J Clin Microbiol 38, 382–388.
    [Google Scholar]
  42. Schwan, T. G., Piesman, J., Golde, W. T., Dolan, M. C. & Rosa, P. A. ( 1995; ). Induction of an outer surface protein on Borrelia burgdorferi during tick feeding. Proc Natl Acad Sci U S A 92, 2909–2913.[CrossRef]
    [Google Scholar]
  43. Sohaskey, C. D., Zückert, W. R. & Barbour, A. G. ( 1999; ). The extended promoters for two outer membrane lipoprotein genes of Borrelia spp. uniquely include a T-rich region. Mol Microbiol 33, 41–51.[CrossRef]
    [Google Scholar]
  44. Sung, S. Y., McDowell, J. V., Carlyon, J. A. & Marconi, R. T. ( 2000; ). Mutation and recombination in the upstream homology box-flanked ospE-related genes of the Lyme disease spirochetes result in the development of new antigenic variants during infection. Infect Immun 68, 1319–1327.[CrossRef]
    [Google Scholar]
  45. Tokarz, R., Anderton, J. M., Katona, L. I. & Benach, J. L. ( 2004; ). Combined effects of blood and temperature shift on Borrelia burgdorferi gene expression as determined by whole genome DNA array. Infect Immun 72, 5419–5432.[CrossRef]
    [Google Scholar]
  46. Wallich, R., Pattathu, J., Kitiratschky, V., Brenner, C., Zipfel, P. F., Brade, V., Simon, M. M. & Kraiczy, P. ( 2005; ). Identification and functional characterization of complement regulator-acquiring surface protein 1 of the Lyme disease spirochetes Borrelia afzelii and Borrelia garinii. Infect Immun 73, 2351–2359.[CrossRef]
    [Google Scholar]
  47. Xu, Q., McShan, K. & Liang, F. T. ( 2007; ). Identification of an ospC operator critical for immune evasion of Borrelia burgdorferi. Mol Microbiol 64, 220–231.[CrossRef]
    [Google Scholar]
  48. Yang, X. F., Goldberg, M. S., Popova, T. G., Schoeler, G. B., Wikel, S. K., Hagman, K. E. & Norgard, M. V. ( 2000; ). Interdependence of environmental factors influencing reciprocal patterns of gene expression in virulent Borrelia burgdorferi. Mol Microbiol 37, 1470–1479.[CrossRef]
    [Google Scholar]
  49. Yang, X. F., Alani, S. M. & Norgard, M. V. ( 2003; ). The response regulator Rrp2 is essential for the expression of major membrane lipoproteins in Borrelia burgdorferi. Proc Natl Acad Sci U S A 100, 11001–11006.[CrossRef]
    [Google Scholar]
  50. Yang, X. F., Pal, U., Alani, S. M., Fikrig, E. & Norgard, M. V. ( 2004; ). Essential role for OspA/B in the life cycle of the Lyme disease spirochaete. J Exp Med 199, 641–648.[CrossRef]
    [Google Scholar]
  51. Yang, X. F., Lybecker, M. C., Pal, U., Alani, S. M., Blevins, J., Revel, A. T., Samuels, D. S. & Norgard, M. V. ( 2005; ). Analysis of the ospC regulatory element controlled by the RpoN–RpoS regulatory pathway in Borrelia burgdorferi. J Bacteriol 187, 4822–4829.[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.2007/011676-0
Loading
/content/journal/micro/10.1099/mic.0.2007/011676-0
Loading

Data & Media loading...

Supplements

vol. , part 1, pp. 275 - 285

[PDF file](11 KB)



PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error