1887

Abstract

, the causative agent of Whipple's disease, is associated with various clinical manifestations as well as an asymptomatic carrier status, and it exhibits genetic heterogeneity. However, relationships that may exist between environmental and clinical strains are unknown. Herein, we developed an efficient genotyping system based on four highly variable genomic sequences (HVGSs) selected on the basis of genome comparison. We analysed 39 samples from 39 patients with Whipple's disease and 10 samples from 10 asymptomatic carriers. Twenty-six classic gastrointestinal Whipple's disease associated with additional manifestations, six relapses of classic Whipple's disease (three gastrointestinal and three neurological relapses), and seven isolated infections due to without digestive involvement (five endocarditis, one spondylodiscitis and one neurological infection) were included in the study. We identified 24 HVGS genotypes among 39 DNA samples from the patients and 10 DNA samples from the asymptomatic carriers. No significant correlation between HVGS genotypes and clinical manifestations of Whipple's disease, or asymptomatic carriers, was found for the 49 samples tested. Our observations revealed a high genetic diversity of strains that is apparently independent of geographical distribution and unrelated to bacterial pathogenicity. Genotyping in Whipple's disease may, however, be useful in epidemiological studies.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.2007/011668-0
2008-02-01
2019-10-23
Loading full text...

Full text loading...

/deliver/fulltext/micro/154/2/521.html?itemId=/content/journal/micro/10.1099/mic.0.2007/011668-0&mimeType=html&fmt=ahah

References

  1. Bentley, S. D., Maiwald, M., Murphy, L. D., Pallen, M. J., Yeats, C. A., Dover, L. G., Nobertczak, H. T., Besra, G. S., Quail, M. A. & other authors ( 2003; ). Sequencing and analysis of the genome of the Whipple's disease bacterium Tropheryma whipplei. Lancet 361, 637–644.[CrossRef]
    [Google Scholar]
  2. Drancourt, M., Carlioz, A. & Raoult, D. ( 2001; ). rpoB sequence analysis of cultured Tropheryma whipplei. J Clin Microbiol 39, 2425–2430.[CrossRef]
    [Google Scholar]
  3. Drancourt, M., Roux, V., Dang, L. V., Tran-Hung, L., Castex, D., Chenal-Francisque, V., Ogata, H., Fournier, P. E., Crubezy, E. & Raoult, D. ( 2004; ). Genotyping, Orientalis-like Yersinia pestis, and plague pandemics. Emerg Infect Dis 10, 1585–1592.[CrossRef]
    [Google Scholar]
  4. Dutly, F. & Altwegg, M. ( 2001; ). Whipple's disease and “Tropheryma whippelii”. Clin Microbiol Rev 14, 561–583.[CrossRef]
    [Google Scholar]
  5. Dutly, F., Hinrikson, H. P., Seidel, T., Morgenegg, S., Altwegg, M. & Bauerfeind, P. ( 2000; ). Tropheryma whippelii DNA in saliva of patients without Whipple's disease. Infection 28, 219–222.[CrossRef]
    [Google Scholar]
  6. Ehrbar, H. U., Bauerfeind, P., Dutly, F., Koelz, H. R. & Altwegg, M. ( 1999; ). PCR-positive tests for Tropheryma whippelii in patients without Whipple's disease. Lancet 353, 2214 [CrossRef]
    [Google Scholar]
  7. Fenollar, F. & Raoult, D. ( 2001; ). Whipple's disease. Clin Diagn Lab Immunol 8, 1–8.
    [Google Scholar]
  8. Fenollar, F., Fournier, P. E., Raoult, D., Gerolami, R., Lepidi, H. & Poyart, C. ( 2002; ). Quantitative detection of Tropheryma whipplei DNA by real-time PCR. J Clin Microbiol 40, 1119–1120.[CrossRef]
    [Google Scholar]
  9. Fenollar, F., Fournier, P. E., Robert, C. & Raoult, D. ( 2004; ). Use of genome selected repeated sequences increases the sensitivity of PCR detection of Tropheryma whipplei. J Clin Microbiol 42, 401–403.[CrossRef]
    [Google Scholar]
  10. Fenollar, F., Puéchal, X. & Raoult, D. ( 2007a; ). Whipple's disease. N Engl J Med 356, 55–66.[CrossRef]
    [Google Scholar]
  11. Fenollar, F., Trani, M., Davoust, B., Salle, B., Birg, M. L., Rolain, J. M. & Raoult, D. ( 2007b; ). Carriage of Tropheryma whipplei in stools of sewer workers and human controls, but not in monkeys and apes. J Infect Dis in press
    [Google Scholar]
  12. Foucault, C., La Scola, B., Lindroos, H., Andersson, S. G. & Raoult, D. ( 2005; ). Multispacer typing technique for sequence-based typing of Bartonella quintana. J Clin Microbiol 43, 41–48.[CrossRef]
    [Google Scholar]
  13. Fournier, P. E., Zhu, Y., Ogata, H. & Raoult, D. ( 2004; ). Use of highly variable intergenic spacer sequences for multispacer typing of Rickettsia conorii strains. J Clin Microbiol 42, 5757–5766.[CrossRef]
    [Google Scholar]
  14. Geissdorfer, W., Wittmann, I., Rollinghoff, M., Schoerner, C. & Bogdan, C. ( 2001a; ). Detection of a new 16S–23S rRNA spacer sequence variant (type 7) of Tropheryma whippelii in a patient with prosthetic aortic valve endocarditis. Eur J Clin Microbiol Infect Dis 20, 762–763.[CrossRef]
    [Google Scholar]
  15. Geissdorfer, W., Wittmann, I., Seitz, G., Cesnjevar, R., Rollinghoff, M., Schoerner, C. & Bogdan, C. ( 2001b; ). A case of aortic valve disease associated with Tropheryma whippelii infection in the absence of other signs of Whipple's disease. Infection 29, 44–47.[CrossRef]
    [Google Scholar]
  16. Hinrikson, H. P., Dutly, F. & Altwegg, M. ( 1999a; ). Homogeneity of 16S–23S ribosomal intergenic spacer regions of Tropheryma whippelii in Swiss patients with Whipple's disease. J Clin Microbiol 37, 152–156.
    [Google Scholar]
  17. Hinrikson, H. P., Dutly, F., Nair, S. & Altwegg, M. ( 1999b; ). Detection of three different types of “Tropheryma whippelii” directly from clinical specimens by sequencing, single-strand conformation polymorphism (SSCP) analysis and type-specific PCR of their 16S–23S ribosomal intergenic spacer region. Int J Syst Bacteriol 49, 1701–1706.[CrossRef]
    [Google Scholar]
  18. Hinrikson, H. P., Dutly, F. & Altwegg, M. ( 2000a; ). Analysis of the actinobacterial insertion in domain III of the 23S rRNA gene of uncultured variants of the bacterium associated with Whipple's disease using broad-range and “Tropheryma whippelii”-specific PCR. Int J Syst Evol Microbiol 50, 1007–1011.[CrossRef]
    [Google Scholar]
  19. Hinrikson, H. P., Dutly, F. & Altwegg, M. ( 2000b; ). Evaluation of a specific nested PCR targeting domain III of the 23S rRNA gene of “Tropheryma whippelii” and proposal of a classification system for its molecular variants. J Clin Microbiol 38, 595–599.
    [Google Scholar]
  20. Kumar, S., Tamura, K., Jakobsen, I. B. & Nei, M. ( 2001; ). mega2: molecular evolutionary genetics analysis software. Bioinformatics 17, 1244–1245.[CrossRef]
    [Google Scholar]
  21. Lepidi, H., Fenollar, F., Gerolami, R., Mege, J. L., Bonzi, M. F., Chappuis, M., Sahel, J. & Raoult, D. ( 2003; ). Whipple's disease: immunospecific and quantitative immunohistochemical study of intestinal biopsy specimens. Hum Pathol 34, 589–596.[CrossRef]
    [Google Scholar]
  22. Li, W., Chomel, B. B., Maruyama, S., Guptil, L., Sander, A., Raoult, D. & Fournier, P. E. ( 2006; ). Multispacer typing to study the genotypic distribution of Bartonella henselae populations. J Clin Microbiol 44, 2499–2506.[CrossRef]
    [Google Scholar]
  23. Maiwald, M., Ditton, H. J., von Herbay, A., Rainey, F. A. & Stackebrandt, E. ( 1996; ). Reassessment of the phylogenetic position of the bacterium associated with Whipple's disease and determination of the 16S–23S ribosomal intergenic spacer sequence. Int J Syst Bacteriol 46, 1078–1082.[CrossRef]
    [Google Scholar]
  24. Maiwald, M., Schuhmacher, F., Ditton, H. J. & von Herbay, A. ( 1998; ). Environmental occurrence of the Whipple's disease bacterium (Tropheryma whippelii). Appl Environ Microbiol 64, 760–762.
    [Google Scholar]
  25. Maiwald, M., von Herbay, A., Lepp, P. W. & Relman, D. A. ( 2000; ). Organization, structure, and variability of the rRNA operon of the Whipple's disease bacterium (Tropheryma whippelii). J Bacteriol 182, 3292–3297.[CrossRef]
    [Google Scholar]
  26. Maiwald, M., Lepp, P. W. & Relman, D. A. ( 2003; ). Analysis of conserved non-rRNA genes of Tropheryma whipplei. Syst Appl Microbiol 26, 3–12.[CrossRef]
    [Google Scholar]
  27. Marth, T. & Raoult, D. ( 2003; ). Whipple's disease. Lancet 361, 239–246.[CrossRef]
    [Google Scholar]
  28. Marth, T., Roux, A., von Herbay, A., Meuer, S. C. & Feurle, G. E. ( 1994; ). Persistent reduction of complement receptor 3 α-chain expressing mononuclear blood cells and transient inhibitory serum factors in Whipple's disease. Clin Immunol Immunopathol 72, 217–226.[CrossRef]
    [Google Scholar]
  29. Marth, T., Neurath, M., Cuccherini, B. & Strober, W. ( 1997; ). Defects of monocyte interleukin 12 production and humoral immunity in Whipple's disease. Gastroenterology 113, 442–448.[CrossRef]
    [Google Scholar]
  30. Morgenegg, S., Dutly, F. & Altwegg, M. ( 2000; ). Cloning and sequencing of a part of the heat shock protein 65 (hsp65) gene of Tropheryma whippelii and its use for the detection of Tropheryma whippelii in clinical specimens by PCR. J Clin Microbiol 38, 2248–2253.
    [Google Scholar]
  31. Raoult, D., Ogata, H., Audic, S., Robert, C., Suhre, K., Drancourt, M. & Claverie, J. ( 2003; ). Tropheryma whipplei Twist: a human pathogenic Actinobacteria with a reduced genome. Genome Res 13, 1800–1809.
    [Google Scholar]
  32. Raoult, D., Fenollar, F. & Birg, M. L. ( 2006; ). Culture of Tropheryma whipplei from the stool of a patient with Whipple's disease. N Engl J Med 355, 1503–1505.[CrossRef]
    [Google Scholar]
  33. Relman, D. A., Schmidt, T. M., MacDermott, R. P. & Falkow, S. ( 1992; ). Identification of the uncultured bacillus of Whipple's disease. N Engl J Med 327, 293–301.[CrossRef]
    [Google Scholar]
  34. Schoniger-Hekele, M., Petermann, D., Weber, B. & Müller, C. ( 2007; ). Tropheryma whipplei in the environment – survey of sewage plant influxes and sewage plant workers. Appl Environ Microbiol 73, 2033–2035.[CrossRef]
    [Google Scholar]
  35. Street, S., Donoghue, H. D. & Neild, G. H. ( 1999; ). Tropheryma whippelii DNA in saliva of healthy people. Lancet 354, 1178–1179.[CrossRef]
    [Google Scholar]
  36. Thompson, J. D., Higgins, D. G. & Gibson, T. J. ( 1994; ). clustal w: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 22, 4673–4680.[CrossRef]
    [Google Scholar]
  37. Wilson, K. H., Blitchington, R., Frothingham, R. & Wilson, J. A. ( 1991; ). Phylogeny of the Whipple's disease-associated bacterium. Lancet 338, 474–475.[CrossRef]
    [Google Scholar]
  38. Zhu, Y., Fournier, P. E., Ogata, H. & Raoult, D. ( 2005; ). Multispacer typing of Rickettsia prowazekii enabling epidemiological studies of epidemic typhus. J Clin Microbiol 43, 4708–4712.[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.2007/011668-0
Loading
/content/journal/micro/10.1099/mic.0.2007/011668-0
Loading

Data & Media loading...

Supplements

[PDF file](20 KB)

PDF

Summary of clinical manifestations of 39 patients with Whipple's disease and 10 asymptomatic carriers, samples tested positive for , genotypes of each HVGS and combined HVGS genotypes for the 49 samples tested. [PDF file](51 KB)

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error