1887

Abstract

SipB, one of the invasion proteins encoded in pathogenicity island 1 (SPI-1), is known to be secreted outside the cell, where it functions as a translocon by assembling into a host-cell plasma membrane-integral structure. Here, we confirmed that wild-type SipB could be localized to the bacterial outer membrane, and further showed that its localization was dependent on extracellular secretion, and was independent of the presence of the SipD protein. Proteinase K susceptibility and immunofluorescence assays indicated that SipB was not incorporated into the outer membrane, but rather was displayed on the bacterial surface. Finally, mutation studies revealed that the N-terminal 100–140 aa (especially amino acids 135–138) of SipB were required for its localization on the bacterial outer membrane.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.2007/011528-0
2008-01-01
2020-07-09
Loading full text...

Full text loading...

/deliver/fulltext/micro/154/1/207.html?itemId=/content/journal/micro/10.1099/mic.0.2007/011528-0&mimeType=html&fmt=ahah

References

  1. Beuzon C. R., Banks G., Deiwick J., Hensel M., Holden D. W.. 1999; pH-dependent secretion of SseB, a product of the SPI-2 type III secretion system of Salmonella typhimurium . Mol Microbiol33:806–816
    [Google Scholar]
  2. Blocker A., Jouihri N., Larquet E., Gounon P., Ebel F., Parsot C., Sansonetti P., Allaoui A.. 2001; Structure and composition of the Shigella flexneri “needle complex”, a part of its type III secreton. Mol Microbiol39:652–663
    [Google Scholar]
  3. Bullas L. R., Ryu J. I.. 1983; Salmonella typhimurium LT2 strains which are r m+ for all three chromosomally located systems of DNA restriction and modification. J Bacteriol156:471–474
    [Google Scholar]
  4. Collazo C. M., Galan J. E.. 1996; Requirement for exported proteins in secretion through the invasion-associated type III system of Salmonella typhimurium . Infect Immun64:3524–3531
    [Google Scholar]
  5. Collazo C. M., Galan J. E.. 1997; The invasion-associated type III system of Salmonella typhimurium directs the translocation of Sip proteins into the host cell. Mol Microbiol24:747–756
    [Google Scholar]
  6. Cornelis G. R., Van Gijsegem F.. 2000; Assembly and function of type III secretory systems. Annu Rev Microbiol54:735–774
    [Google Scholar]
  7. Curtiss R. III, Porter S. B., Munson M., Tinge S. A., Hassan J. O., Gentry-Weeks C., Kelly S. M.. 1991; Nonrecombinant and recombinant avirulent salmonella vaccines for poultry. In Colonization Control of Human Bacterial Enteropathogens in Poultry pp169–198 Edited by Blankenship L. C.. Bailey J. H. S., Cox N. A., Stern N. J., Meinersmann R. J. New York: Academic Press;
    [Google Scholar]
  8. Daniell S. J., Delahay R. M., Shaw R. K., Hartland E. A., Pallen M. J., Booy F., Ebel F., Knutton S., Frankel G.. 2001; Coiled-coil domain of enteropathogenic Escherichia coli type III secreted protein EspD is involved in EspA filament-mediated cell attachment and hemolysis. Infect Immun69:4055–4064
    [Google Scholar]
  9. Datsenko K. A., Wanner B. L.. 2000; One-step inactivation of chromosomal genes in Escherichia coli K-12 using PCR products. Proc Natl Acad Sci U S A97:6640–6645
    [Google Scholar]
  10. Davis R. W., Bolstein D., Roth J. R.. 1980; Advanced Bacterial Genetics Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
  11. Davis R., Marquart M. E., Lucius D., Picking W. D.. 1998; Protein–protein interactions in the assembly of Shigella flexneri invasion plasmid antigens IpaB and IpaC into protein complexes. Biochim Biophys Acta 1429;45–56
    [Google Scholar]
  12. Delahay R. M., Frankel G.. 2002; Coiled-coil proteins associated with type III secretion systems: a versatile domain revisited. Mol Microbiol45:905–916
    [Google Scholar]
  13. Faudry E., Vernier G., Neumann E., Forge V., Attree I.. 2006; Synergistic pore formation by type III toxin translocators of Pseudomonas aeruginosa . Biochemistry45:8117–8123
    [Google Scholar]
  14. Galán J. E., Collmer A.. 1999; Type III secretion machines: bacterial devices for protein delivery into host cells. Science284:1322–1328
    [Google Scholar]
  15. Galan J. E., Curtiss R. III. 1991; Distribution of the invA , -B , -C , and -D genes of Salmonella typhimurium among other Salmonella serovars: invA mutants of Salmonella typhi are deficient for entry into mammalian cells. Infect Immun59:2901–2908
    [Google Scholar]
  16. Hayward R. D., Koronakis V.. 1999; Direct nucleation and bundling of actin by the SipC protein of invasive Salmonella . EMBO J18:4926–4934
    [Google Scholar]
  17. Hayward R. D., McGhie E. J., Koronakis V.. 2000; Membrane fusion activity of purified SipB, a Salmonella surface protein essential for mammalian cell invasion. Mol Microbiol37:727–739
    [Google Scholar]
  18. Hersh D., Monack D. M., Smith M. R., Ghori N., Falkow S., Zychlinsky A.. 1999; The Salmonella invasin SipB induces macrophage apoptosis by binding to caspase-1. Proc Natl Acad Sci U S A96:2396–2401
    [Google Scholar]
  19. Hueck C. J.. 1998; Type III protein secretion systems in bacterial pathogens of animals and plants. Microbiol Mol Biol Rev62:379–433
    [Google Scholar]
  20. Ide T., Laarmann S., Greune L., Schillers H., Oberleithner H., Schmidt M. A.. 2001; Characterization of translocation pores inserted into plasma membranes by type III-secreted Esp proteins of enteropathogenic Escherichia coli . Cell Microbiol3:669–679
    [Google Scholar]
  21. Johnson S., Roversi P., Espina M., Olive A., Deane J. E., Birket S., Field T., Picking W. D., Blocker A. J.. other authors 2006; Self-chaperoning of the type III secretion system needle tip proteins IpaD and BipD. J Biol Chem282:4035–4044
    [Google Scholar]
  22. Kaniga K., Tucker S., Trollinger D., Galán J. E.. 1995; Homologs of the Shigella IpaB and IpaC invasins are required for Salmonella typhimurium entry into cultured epithelial cells. J Bacteriol177:3965–3971
    [Google Scholar]
  23. Kim B. H., Kim H. G., Kim J. S., Jang J. I., Park Y. K.. 2007; Analysis of functional domains present in the N-terminus of the SipB protein. Microbiology153:2998–3008
    [Google Scholar]
  24. Kimbrough T. G., Miller S. I.. 2002; Assembly of the type III secretion needle complex of Salmonella typhimurium . Microbes Infect4:75–82
    [Google Scholar]
  25. Klein J. R., Jones B. D.. 2001; Salmonella pathogenicity island 2-encoded proteins SseC and SseD are essential for virulence and are substrates of the type III secretion system. Infect Immun69:737–743
    [Google Scholar]
  26. Kubori T., Galan J. E.. 2002; Salmonella type III secretion-associated protein InvE controls translocation of effector proteins into host cells. J Bacteriol184:4699–4708
    [Google Scholar]
  27. Kuwae A., Ohishi M., Watanabe M., Nagai M., Abe A.. 2003; BopB is a type III secreted protein in Bordetella bronchiseptica and is required for cytotoxicity against cultured mammalian cells. Cell Microbiol5:973–983
    [Google Scholar]
  28. McGhie E. J., Hume P. J., Hayward R. D., Torres J., Koronakis V.. 2002; Topology of the Salmonella invasion protein SipB in a model bilayer. Mol Microbiol44:1309–1321
    [Google Scholar]
  29. Menard R., Sansonetti P., Parsot C.. 1994; The secretion of the Shigella flexneri Ipa invasins is activated by epithelial cells and controlled by IpaB and IpaD. EMBO J13:5293–5302
    [Google Scholar]
  30. Mills J. A., Buysse J. M., Oaks E. V.. 1988; Shigella flexneri invasion plasmid antigens B and C: epitope location and characterization with monoclonal antibodies. Infect Immun56:2933–2941
    [Google Scholar]
  31. Neyt C., Cornelis G. R.. 1999; Insertion of a Yop translocation pore into the macrophage plasma membrane by Yersinia enterocolitica : requirement for translocators YopB and YopD, but not LcrG. Mol Microbiol33:971–981
    [Google Scholar]
  32. Nikolaus T., Deiwick J., Rappl C., Freeman J. A., Schröder W., Miller S. I., Hensel M.. 2001; SseBCD proteins are secreted by the type III secretion system of Salmonella pathogenicity island 2 and function as a translocon. J Bacteriol183:6036–6045
    [Google Scholar]
  33. Nogawa H., Kuwae A., Matsuzawa T., Abe A.. 2004; The type III secreted protein BopD in Bordetella bronchiseptica is complexed with BopB for pore formation on the host plasma membrane. J Bacteriol186:3806–3813
    [Google Scholar]
  34. Olive A. J., Kenjale R., Espina M., Moore D. S., Picking W. L., Picking W. D.. 2007; Bile salts stimulate recruitment of IpaB to the Shigella flexneri surface, where it colocalizes with IpaD at the tip of the type III secretion needle. Infect Immun75:2626–2629
    [Google Scholar]
  35. Osborn M. J., Munson R.. 1974; Separation of the inner (cytoplasmic) and outer membranes of Gram-negative bacteria. Methods Enzymol31:642–653
    [Google Scholar]
  36. Pallen M. J., Dougan G., Frankel G.. 1997; Coiled-coil domains in proteins secreted by type III secretion systems. Mol Microbiol25:423–425
    [Google Scholar]
  37. Ramamurthi K. S., Schneewind O.. 2005; A synonymous mutation in Yersinia enterocolitica yopE affects the function of the YopE type III secretion signal. J Bacteriol187:707–715
    [Google Scholar]
  38. Sambrook J., Fritsch E. F., Maniatis T.. 1989; Molecular Cloning: a Laboratory Manual , 2nd edn. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
  39. Scherer C. A., Cooper E., Miller S. I.. 2000; The Salmonella type III secretion translocon protein SspC is inserted into the epithelial cell plasma membrane upon infection. Mol Microbiol37:1133–1145
    [Google Scholar]
  40. Suparak S., Kespichayawattana W., Haque A., Easton A., Damnin S., Lertmemongkolchai G., Bancroft G. J., Korbsrisate S.. 2005; Multinucleated giant cell formation and apoptosis in infected host cells is mediated by Burkholderia pseudomallei type III secretion protein BipB. J Bacteriol187:6556–6560
    [Google Scholar]
  41. Veenendaal A. K., Hodgkinson J. L., Schwarzer L., Stabat D., Zenk S. F., Blocker A. J.. 2007; The type III secretion system needle tip complex mediates host cell sensing and translocon insertion. Mol Microbiol63:1719–1730
    [Google Scholar]
  42. Walberg M., Gaustad P., Steen H. B.. 1999; Uptake kinetics of nucleic acid targeting dyes in S. aureus , E. faecalis and B. cereus : a flow cytometric study. J Microbiol Methods35:167–176
    [Google Scholar]
  43. Watarai M., Tobe T., Yoshikawa M., Sasakawa C.. 1995; Contact of Shigella with host cells triggers release of Ipa invasins and is an essential function of invasiveness. EMBO J14:2461–2470
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.2007/011528-0
Loading
/content/journal/micro/10.1099/mic.0.2007/011528-0
Loading

Data & Media loading...

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error