1887

Abstract

The expression of the genes involved in the anaerobic degradation of benzoate in sp. CIB is controlled by the specific BzdR transcriptional repressor at the promoter. This catabolic promoter is also subject to catabolite repression by some organic acids. and experiments have shown that BzdR behaves as a repressor of the promoter by overlapping the transcription initiation site as well as the −35 and −10 boxes, benzoyl-CoA being the inducer molecule. In addition, by using a  : :  fusion both in sp. CIB and in an isogenic strain lacking the gene, we have shown that the succinate-dependent catabolite repression requires participation of the BzdR repressor.

Keyword(s): RNAP, RNA polymerase
Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.2007/011361-0
2008-01-01
2019-11-13
Loading full text...

Full text loading...

/deliver/fulltext/micro/154/1/306.html?itemId=/content/journal/micro/10.1099/mic.0.2007/011361-0&mimeType=html&fmt=ahah

References

  1. Altschul, S. F., Gish, W., Miller, E., Myers, W. & Lipman, D. J. ( 1990; ). Basic local alignment search tool. J Mol Biol 215, 403–410.[CrossRef]
    [Google Scholar]
  2. Aranda-Olmedo, I., Ramos, J. L. & Marqués, S. ( 2005; ). Integration of signals through Crc and PtsN in catabolite repression of Pseudomonas putida TOL plasmid pWW0. Appl Environ Microbiol 71, 4191–4198.[CrossRef]
    [Google Scholar]
  3. Aranda-Olmedo, I., Marín, P., Ramos, J. L. & Marqués, S. ( 2006; ). Role of the ptsN gene product in catabolite repression of the Pseudomonas putida TOL toluene degradation pathway in chemostat cultures. Appl Environ Microbiol 72, 7418–7421.[CrossRef]
    [Google Scholar]
  4. Barragán, M. J. L., Blázquez, B., Zamarro, M. T., Mancheño, J. M., García, J. L., Díaz, E. & Carmona, M. ( 2005; ). BzdR, a repressor that controls the anaerobic catabolism of benzoate in Azoarcus sp. CIB, is the first member of a new subfamily of transcriptional regulators. J Biol Chem 280, 10683–10694.[CrossRef]
    [Google Scholar]
  5. Boll, M. ( 2005; ). Key enzymes in the anaerobic aromatic metabolism catalysing Birch-like reductions. Biochim Biophys Acta 1707, 34–50.[CrossRef]
    [Google Scholar]
  6. Bradford, M. M. ( 1976; ). A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein–dye binding. Anal Biochem 72, 248–254.[CrossRef]
    [Google Scholar]
  7. Canosa, I., Sánchez-Romero, J. M., Yuste, L. & Rojo, F. ( 2000; ). A positive feedback mechanism controls expression of AlkS, the transcriptional regulator of the Pseudomonas oleovorans alkane degradation pathway. Mol Microbiol 35, 791–799.[CrossRef]
    [Google Scholar]
  8. Carmona, M. & Díaz, E. ( 2005; ). Iron-reducing bacteria unravel novel strategies for the anaerobic catabolism of aromatic compounds. Mol Microbiol 58, 1210–1215.[CrossRef]
    [Google Scholar]
  9. Carmona, M. & Magasanik, B. ( 1996; ). Activation of transcription at sigma 54-dependent promoters on linear templates requires intrinsic or induced bending of the DNA. J Mol Biol 261, 348–356.[CrossRef]
    [Google Scholar]
  10. Carmona, M., Prieto, M. A., Galán, B., García, J. L. & Díaz, E. ( 2008; ). Signaling networks and design of pollutant biosensors. In Microbial Biodegradation: Genomics and Molecular Biology, pp. 97–142. Edited by E. Díaz. London, UK: Horizon Scientific Press.
  11. Cases, I. & de Lorenzo, V. ( 1998; ). Expression systems and physiological control of promoter activity in bacteria. Curr Opin Microbiol 1, 303–310.[CrossRef]
    [Google Scholar]
  12. Cases, I. & de Lorenzo, V. ( 2005; ). Promoters in the environment: transcriptional regulation in its natural context. Nat Rev Microbiol 3, 105–118.[CrossRef]
    [Google Scholar]
  13. Cervin, M. A., Lewis, R. J., Brannigan, J. A. & Spiegelman, G. B. ( 1998; ). The Bacillus subtilis regulator SinR inhibits spoIIG promoter transcription in vitro without displacing RNA polymerase. Nucleic Acids Res 26, 3806–3812.[CrossRef]
    [Google Scholar]
  14. Collier, D. N., Hager, P. W. & Phibbs, P. V., Jr ( 1996; ). The Bacillus subtilis regulator SinR inhibits spoIIG promoter transcription in vitro without displacing RNA polymerase. Res Microbiol 147, 551–561.[CrossRef]
    [Google Scholar]
  15. de Lorenzo, V. & Timmis, K. N. ( 1994; ). Analysis and construction of stable phenotypes in gram-negative bacteria with Tn5- and Tn10-derived minitransposons. Methods Enzymol 235, 386–405.
    [Google Scholar]
  16. Díaz, E. & Prieto, M. A. ( 2000; ). Bacterial promoters triggering biodegradation of aromatic pollutants. Curr Opin Biotechnol 11, 467–475.[CrossRef]
    [Google Scholar]
  17. Durante-Rodríguez, G., Zamarro, M. T., García, J. L., Díaz, E. & Carmona, M. ( 2006; ). Oxygen-dependent regulation of the central pathway for the anaerobic catabolism of aromatic compounds in Azoarcus sp. strain CIB. J Bacteriol 188, 2343–2354.[CrossRef]
    [Google Scholar]
  18. Egland, P. G. & Harwood, C. S. ( 1999; ). BadR, a new MarR family member, regulates anaerobic benzoate degradation by Rhodopseudomonas palustris in concert with AadR, an Fnr family member. J Bacteriol 181, 2102–2109.
    [Google Scholar]
  19. Egland, P. G. & Harwood, C. S. ( 2000; ). HbaR, a 4-hydroxybenzoate sensor and FNR-CRP superfamily member, regulates anaerobic 4-hydroxybenzoate degradation by Rhodopseudomonas palustris. J Bacteriol 182, 100–106.[CrossRef]
    [Google Scholar]
  20. Elshahed, M. S., Bhupathiraju, V. K., Wofford, N. Q., Nanny, M. A. & McInerney, M. J. ( 2001; ). Metabolism of benzoate, cyclohex-1-ene carboxylate, and cyclohexane carboxylate by “Syntrophus aciditrophicus” strain SB in syntrophic association with H2-using microorganisms. Appl Environ Microbiol 67, 1728–1738.[CrossRef]
    [Google Scholar]
  21. Gibson, J. & Harwood, C. S. ( 2002; ). Metabolic diversity in aromatic compound utilization by anaerobic microbes. Annu Rev Microbiol 56, 345–369.[CrossRef]
    [Google Scholar]
  22. Harwood, C. S. & Parales, R. E. ( 1996; ). The β-ketoadipate pathway and the biology of self-identity. Annu Rev Microbiol 50, 553–590.[CrossRef]
    [Google Scholar]
  23. Harwood, C. S., Burchhardt, G., Herrmann, H. & Fuchs, G. ( 1999; ). Genetic clues on the evolution of anaerobic catabolism of aromatic compounds. FEMS Microbiol Rev 22, 439–458.
    [Google Scholar]
  24. Heider, J., Boll, M., Breese, K., Breinig, S., Ebenau-Jehle, C., Feil, U., Gad'on, N., Laempe, D., Leuthner, B. & other authors ( 1998; ). Differential induction of enzymes involved in anaerobic metabolism of aromatic compounds in the denitrifying bacterium Thauera aromatica. Arch Microbiol 170, 120–131.[CrossRef]
    [Google Scholar]
  25. Jahn, M. K., Haderlein, S. B. & Meckenstock, R. U. ( 2005; ). Anaerobic degradation of benzene, toluene, ethylbenzene, and o-xylene in sediment-free iron-reducing enrichment cultures. Appl Environ Microbiol 71, 3355–3358.[CrossRef]
    [Google Scholar]
  26. Koudelka, G. B. & Lam, C. Y. ( 1993; ). Differential recognition of OR1 and OR3 by bacteriophage 434 repressor and Cro. J Biol Chem 268, 23812–23817.
    [Google Scholar]
  27. Kovach, M. E., Elzer, P. H., Hills, D. S., Robertson, G. T., Farris, M. A., Roop, R. M., II & Peterson, K. M. ( 1995; ). Four new derivatives of the broad-host-range cloning vector pBBR1MCS, carrying different antibiotic-resistance cassettes. Gene 166, 175–176.[CrossRef]
    [Google Scholar]
  28. Laemmli, U. K. ( 1970; ). Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227, 680–685.[CrossRef]
    [Google Scholar]
  29. López Barragán, M. J., Carmona, M., Zamarro, M. T., Thiele, B., Boll, M., Fuchs, G., García, J. L. & Díaz, E. ( 2004; ). The bzd gene cluster, coding for anaerobic benzoate catabolism, in Azoarcus sp. strain CIB. J Bacteriol 186, 5762–5774.[CrossRef]
    [Google Scholar]
  30. Lovley, D. R. ( 2003; ). Cleaning up with genomics: applying molecular biology to bioremediation. Nat Rev Microbiol 1, 35–44.[CrossRef]
    [Google Scholar]
  31. Magasanik, B. ( 1970; ). Glucose effects: inducer exclusion and repression. In The Lactose Operon, pp. 189–220. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory.
  32. Mandic-Mulec, I., Doukhan, L. & Smith, I. ( 1995; ). The Bacillus subtilis SinR protein is a repressor of the key sporulation gene spo0A. J Bacteriol 177, 4619–4627.
    [Google Scholar]
  33. Marqués, S., Aranda-Olmedo, I. & Ramos, J. L. ( 2006; ). Controlling bacterial physiology for optimal expression of gene reporter constructs. Curr Opin Biotechnol 17, 50–52.[CrossRef]
    [Google Scholar]
  34. Marschall, C., Labrousse, V., Kreimer, M., Weichart, D., Kolb, A. & Hengge-Aronis, R. ( 1998; ). Molecular analysis of the regulation of csiD, a carbon starvation-inducible gene in Escherichia coli that is exclusively dependent on σ s and requires activation by cAMP-CRP. J Mol Biol 276, 339–353.[CrossRef]
    [Google Scholar]
  35. Martín, A. C., López, R. & García, P. ( 1996; ). Analysis of the complete nucleotide sequence and functional organization of the genome of Streptococcus pneumoniae bacteriophage Cp-1. J Virol 70, 3678–3687.
    [Google Scholar]
  36. Maxam, A. M. & Gilbert, W. ( 1980; ). Sequencing end-labeled DNA with base-specific chemical cleavages. Methods Enzymol 65, 499–560.
    [Google Scholar]
  37. Miller, J. H. ( 1972; ). Experiments in Molecular Genetics. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory.
  38. Morales, G., Linares, J. F., Beloso, A., Albar, J. P., Martínez, J. L. & Rojo, F. ( 2004; ). The Pseudomonas putida Crc global regulator controls the expression of genes from several chromosomal catabolic pathways for aromatic compounds. J Bacteriol 186, 1337–1344.[CrossRef]
    [Google Scholar]
  39. Morales, G., Ugidos, A. & Rojo, F. ( 2006; ). Inactivation of the Pseudomonas putida cytochrome o ubiquinol oxidase leads to a significant change in the transcriptome and to increased expression of the CIO and Cbb3-1 terminal oxidases. Environ Microbiol 8, 1764–1774.[CrossRef]
    [Google Scholar]
  40. Müller, C., Petruschka, L., Cuypers, H., Burchhardt, G. & Herrmann, H. ( 1996; ). Carbon catabolite repression of phenol degradation in Pseudomonas putida is mediated by the inhibition of the activator protein PhlR. J Bacteriol 178, 2030–2036.
    [Google Scholar]
  41. Ohtsubo, Y., Goto, H., Nagata, Y., Kudo, T. & Tsuda, M. ( 2006; ). Identification of a reponse regulator gene for catabolite control from a PCB-degrading beta-proteobacterium, Acidovorax sp. KKS102. Mol Microbiol 60, 1563–1575.[CrossRef]
    [Google Scholar]
  42. Peres, C. M. & Harwood, C. S. ( 2006; ). BadM is a transcriptional repressor and one of three regulators that control benzoyl coenzyme A reductase gene expression in Rhodopseudomonas palustris. J Bacteriol 188, 8662–8665.[CrossRef]
    [Google Scholar]
  43. Peters, F., Rother, M. & Boll, M. ( 2004; ). Selenocysteine-containing proteins in anaerobic benzoate metabolism of Desulfococcus multivorans. J Bacteriol 186, 2156–2163.[CrossRef]
    [Google Scholar]
  44. Peters, F., Shinoda, Y., McInerney, M. J. & Boll, M. ( 2007; ). Cyclohexa-1,5-diene-1-carbonyl-coenzyme A (CoA) hydratases of Geobacter metallireducens and Syntrophus aciditrophicus: evidence for a common benzoyl-CoA degradation pathway in facultative and strict anaerobes. J Bacteriol 189, 1055–1060.[CrossRef]
    [Google Scholar]
  45. Petruschka, L., Burchhardt, G., Müller, C., Weihe, C. & Herrmann, H. ( 2001; ). The cyo operon of Pseudomonas putida is involved in catabolic repression of phenol degradation. Mol Genet Genomics 266, 199–206.[CrossRef]
    [Google Scholar]
  46. Prieto, M. A., Galán, B., Torres, B., Ferrández, A., Fernández, C., Miñambres, B., García, J. L. & Díaz, E. ( 2004; ). Aromatic metabolism versus carbon availability: the regulatory network that controls catabolism of less-preferred carbon sources in Escherichia coli. FEMS Microbiol Rev 28, 503–518.[CrossRef]
    [Google Scholar]
  47. Rabus, R., Kube, M., Heider, J., Beck, A., Heitmann, K., Widdel, F. & Reinhardt, R. ( 2005; ). The genome sequence of an anaerobic aromatic-degrading denitrifying bacterium, strain EbN1. Arch Microbiol 183, 27–36.[CrossRef]
    [Google Scholar]
  48. Rojo, F. & Dinamarca, M. A. ( 2004; ). Catabolite repression and physiological control. In Pseudomonas, vol. 2, pp. 365–387. Edited by J. L. Ramos. New York: Kluwer.
  49. Safinowski, M., Griebler, C. & Meckenstock, R. U. ( 2006; ). Anaerobic cometabolism transformation of polycyclic and heterocyclic aromatic hydrocarbons: evidence from laboratory and field studies. Environ Sci Technol 40, 4165–4173.[CrossRef]
    [Google Scholar]
  50. Sambrook, J. W. & Russell, D. W. ( 2001; ). Molecular Cloning: a Laboratory Manual, 3rd edn. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory.
  51. Song, B. & Ward, B. B. ( 2005; ). Genetic diversity of benzoyl coenzyme A reductase genes detected in denitrifying isolates and estuarine sediment communities. Appl Environ Microbiol 71, 2036–2045.[CrossRef]
    [Google Scholar]
  52. Tropel, D. & van der Meer, J. R. ( 2004; ). Bacterial transcriptional regulators for degradation pathways of aromatic compounds. Microbiol Mol Biol Rev 68, 474–500.[CrossRef]
    [Google Scholar]
  53. Weickert, M. J. & Adhya, S. ( 1992; ). A family of bacterial regulators homologous to Gal and Lac repressors. J Biol Chem 267, 15869–15874.
    [Google Scholar]
  54. Wischgoll, S., Heintz, D., Peters, F., Erxleben, A., Sarnighausen, E., Reski, R., van Dorsselaer, A. & Boll, M. ( 2005; ). Gene clusters involved in anaerobic benzoate degradation of Geobacter metallireducens. Mol Microbiol 58, 1238–1252.[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.2007/011361-0
Loading
/content/journal/micro/10.1099/mic.0.2007/011361-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error