1887

Abstract

The ability to degrade carbonyl sulfide (COS) was confirmed in seven bacterial strains that were isolated from soil, without the addition of COS. Comparative 16S rRNA gene sequence analysis indicated that these isolates belonged to the genera and . For example, sp. strain THI401, grown on PYG agar medium, was able to degrade an initial level of 30 parts per million by volume COS within 1 h, while 60 % of the initial COS was decreased by abiotic conversion in 30 h. Considering natural COS flux between soil and the atmosphere, COS degradation by these bacteria was confirmed at an ambient level of 500 parts per trillion by volume (p.p.t.v.), using sterilized soil to cultivate the bacterium. Autoclave sterilization of soil resulted in a small amount of COS emission, while spp. degraded COS at a faster rate than it was emitted from the soil, and reduced the COS mixing ratio to a level that was lower than the ambient level: THI401 degraded COS from an initial level of 530 p.p.t.v. to a level of 330 p.p.t.v. in 30 h. These results provide experimental evidence of microbial activity in soil as a sink for atmospheric COS.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.2007/011213-0
2008-01-01
2020-04-06
Loading full text...

Full text loading...

/deliver/fulltext/micro/154/1/249.html?itemId=/content/journal/micro/10.1099/mic.0.2007/011213-0&mimeType=html&fmt=ahah

References

  1. Altschul S. F., Gish W., Miller W., Myers E. W., Lipman D. J.. 1990; Basic local alignment search tool. J Mol Biol215:403–410
    [Google Scholar]
  2. Andreae M. O., Crutzen P. J.. 1997; Atmospheric aerosols: biogeochemical sources and role in atmospheric chemistry. Science276:1052–1058
    [Google Scholar]
  3. Badger M. R., Price G. D.. 1990; Carbon oxysulfide is an inhibitor of both CO2 and uptake in the cyanobacterium Synechococcus PCC7942. Plant Physiol94:35–39
    [Google Scholar]
  4. Bandy A. R., Thornton D. C., Scott D. L., Lalevic M., Lewin E. E., Driedger A. R. III. 1992; A time series for carbonyl sulfide in the northern hemisphere. J Atmos Chem14:527–534
    [Google Scholar]
  5. Bremner J. M., Banwart W. L.. 1976; Sorption of sulfur gases by soils. Soil Biol Biochem8:79–83
    [Google Scholar]
  6. Castro M. S., Galloway J. N.. 1991; A comparison of sulfur-free and ambient air enclosure techniques for measuring the exchange of reduced sulfur gases between soils and the atmosphere. J Geophys Res96:15427–15437
    [Google Scholar]
  7. Chengelis C. P., Neal R. A.. 1979; Hepatic carbonyl sulfide metabolism. Biochem Biophys Res Commun90:993–999
    [Google Scholar]
  8. Chin M., Davis D. D.. 1995; A reanalysis of carbonyl sulfide as a source of stratospheric background sulfur aerosol. J Geophys Res100:8993–9006
    [Google Scholar]
  9. Conrad R.. 1996; Soil microorganisms as controllers of atmospheric trace gases (H2,CO, CH4, OCS,N2O and NO). Microbiol Rev60:609–640
    [Google Scholar]
  10. Conrad R., Meuser K.. 2000; Soils contain more than one activity consuming carbonyl sulfide. Atmos Environ34:3635–3639
    [Google Scholar]
  11. Crutzen P. J.. 1976; The possible importance of CSO for the sulfate layer of the stratosphere. Geophys Res Lett3:73–76
    [Google Scholar]
  12. Elliott S., Lu E., Rowland F. S.. 1989; Rates and mechanisms for the hydrolysis of carbonyl sulfide in natural waters. Environ Sci Technol23:458–461
    [Google Scholar]
  13. Ferm R. J.. 1957; The chemistry of carbonyl sulfide. Chem Rev57:621–640
    [Google Scholar]
  14. Gries C., Nash T. H. III, Kesselmeier J.. 1994; Exchange of reduced sulfur gases between lichens and the atmosphere. Biogeochemistry26:25–39
    [Google Scholar]
  15. Iivanainen E. K., Martikainen P. J., Räisänen M. L., Katila M. L.. 1997; Mycobacteria in boreal coniferous forest soils. FEMS Microbiol Ecol23:325–332
    [Google Scholar]
  16. Katayama Y., Narahara Y., Inoue Y., Amano F., Kanagawa T., Kuraishi H.. 1992; A thiocyanate hydrolase of Thiobacillus thioparus . A novel enzyme catalyzing the formation of carbonyl sulfide from thiocyanate. J Biol Chem267:9170–9175
    [Google Scholar]
  17. Kesselmeier J., Teusch N., Kuhn U.. 1999; Controlling variables for the uptake of atmospheric carbonyl sulfide by soil. J Geophys Res104:11577–11584
    [Google Scholar]
  18. Kuhn U., Ammann C., Wolf A., Meixner F. X., Andreae M. O., Kesselmeier J.. 1999; Carbonyl sulfide exchange on an ecosystem scale: soil represents a dominant sink for atmospheric COS. Atmos Environ33:995–1008
    [Google Scholar]
  19. Lehmann S., Conrad R.. 1996; Characteristics of turnover of carbonyl sulfide in four different soils. J Atmos Chem23:193–207
    [Google Scholar]
  20. Miller A. G., Espie G. S., Canvin D. T.. 1989; Use of carbon oxysulfide, a structural analog of CO2, to study active CO2 transport in the cyanobacterium Synechococcus UTEX 625. Plant Physiol90:1221–1231
    [Google Scholar]
  21. Muyzer G., Teske A., Wirsen C. O., Jannasch H. W.. 1995; Phylogenetic relationships of Thiomicrospira species and their identification in deep-sea hydrothermal vent samples by denaturing gradient gel electrophoresis of 16S rDNA fragments. Arch Microbiol164:165–172
    [Google Scholar]
  22. Nguyen B. C., Mihalopoulos N., Putaud J. P., Bonsang B.. 1995; Carbonyl sulfide emissions from biomass burning in the tropics. J Atmos Chem22:55–65
    [Google Scholar]
  23. Protoschill-Krebs G., Kesselmeier J.. 1992; Enzymatic pathways for the consumption of carbonyl sulphide (COS) by higher plants. Bot Acta105:206–212
    [Google Scholar]
  24. Protoschill-Krebs G., Wilhelm C., Kesselmeier J.. 1995; Consumption of carbonyl sulphide by Chlamydomonas reinhardtii with different activities of carbonic anhydrase (CA) induced by different CO2 growing regimes. Bot Acta108:445–448
    [Google Scholar]
  25. Saito M., Honna T., Kanagawa T., Katayama Y.. 2002; Microbial degradation of carbonyl sulfide in soils. Microbes Environ17:32–38
    [Google Scholar]
  26. Simmons J. S., Klemedtsson L., Hultberg H., Hines M. E.. 1999; Consumption of atmospheric carbonyl sulfide by coniferous boreal forest soils. J Geophys Res104:11569–11576
    [Google Scholar]
  27. Smith N. A., Kelly D. P.. 1988; Oxidation of carbon disulphide as the sole source of energy for the autotrophic growth of Thiobacillus thioparus strain TK-m. J Gen Microbiol134:3041–3048
    [Google Scholar]
  28. Steinbacher M., Bingemer H. G., Schmidt U.. 2004; Measurements of the exchange of carbonyl sulfide (OCS) and carbon disulfide (CS2) between soil and atmosphere in a spruce forest in central Germany. Atmos Environ38:6043–6052
    [Google Scholar]
  29. Suarez Covarrubias A., Larsson A. M., Högbom M., Lindberg J., Bergfors T., Björkelid C., Mowbray S. L., Unge T., Jones T. A.. 2005; Structure and function of carbonic anhydrases from Mycobacterium tuberculosis . J Biol Chem280:18782–18789
    [Google Scholar]
  30. Torres A. L., Maroulis P. J., Goldberg A. B., Bandy A. R.. 1980; Atmospheric OCS measurements on project Gametag. J Geophys Res85:7357–7360
    [Google Scholar]
  31. Watts S. F.. 2000; The mass budgets of carbonyl sulfide, dimethyl sulfide, carbon disulfide and hydrogen sulfide. Atmos Environ34:761–779
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.2007/011213-0
Loading
/content/journal/micro/10.1099/mic.0.2007/011213-0
Loading

Data & Media loading...

Most cited this month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error