1887

Abstract

The granulomatous response is a characteristic histological feature of infection responsible for organism containment. The development of cell-mediated immunity is essential for protection against disease, as well as being required for maintenance of the sequestering granulomatous response. Trehalose 6,6′-dimycolate (TDM; cord factor), a glycolipid associated with the cell wall of mycobacteria, is implicated as a key immunogenic component in infection. Models of TDM-induced hypersensitive granulomatous response have similar pathologies to that of active tuberculosis infection. Prior immunization (sensitization) of mice with TDM results in exacerbated histological damage, inflammation and lymphocytic infiltration upon subsequent TDM challenge. Adoptive transfer experiments were performed to ascertain the cell phenotype governing this response; CD4 cells were identified as critical for development of related pathology. Mice receiving CD4 cells from donor TDM-immunized mice demonstrated significantly increased production of Th1-type cytokines IFN- and IL-12 within the lung upon subsequent TDM challenge. Control groups receiving naïve CD4 cells, or CD8 or CD19 cells isolated from TDM-immunized donors, did not exhibit an exacerbated response. The identified CD4 cells isolated from TDM-immunized mice produced significant amounts of IFN- and IL-2 when exposed to TDM-pulsed macrophages . These experiments provide further evidence for involvement of a cell-mediated response in TDM-induced granuloma formation, which mimics pathological damage elicited during infection.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.2007/010850-0
2007-10-01
2019-11-18
Loading full text...

Full text loading...

/deliver/fulltext/micro/153/10/3360.html?itemId=/content/journal/micro/10.1099/mic.0.2007/010850-0&mimeType=html&fmt=ahah

References

  1. Actor, J. K., Kuffner, T., Dezzutti, C. S., Hunter, R. L. & McNicholl, J. M. ( 1998; ). A flash-type bioluminescent immunoassay that is more sensitive than radioimaging: quantitative detection of cytokine cDNA in activated and resting human cells. J Immunol Methods 211, 65–77.[CrossRef]
    [Google Scholar]
  2. Actor, J. K., Olsen, M., Jagannath, C. & Hunter, R. L. ( 1999; ). Relationship of survival, organism containment, and granuloma formation in acute murine tuberculosis. J Interferon Cytokine Res 19, 1183–1193.[CrossRef]
    [Google Scholar]
  3. Actor, J. K., Olsen, M., Hunter, R. L., Jr & Geng, Y. J. ( 2001; ). Dysregulated response to mycobacterial cord factor trehalose-6,6′-dimycolate in CD1D−/− mice. J Interferon Cytokine Res 21, 1089–1096.[CrossRef]
    [Google Scholar]
  4. Armitige, L. Y., Jagannath, C., Wanger, A. R. & Norris, S. J. ( 2000; ). Disruption of the genes encoding antigen 85A and antigen 85B of Mycobacterium tuberculosis H37Rv: effect on growth in culture and in macrophages. Infect Immun 68, 767–778.[CrossRef]
    [Google Scholar]
  5. Behling, C. A., Perez, R. L., Kidd, M. R., Staton, G. W., Jr & Hunter, R. L. ( 1993; ). Induction of pulmonary granulomas, macrophage procoagulant activity, and tumor necrosis factor-alpha by trehalose glycolipids. Ann Clin Lab Sci 23, 256–266.
    [Google Scholar]
  6. Bekierkunst, A. ( 1968; ). Acute granulomatous response produced in mice by trehalose-6,6′-dimycolate. J Bacteriol 96, 958–961.
    [Google Scholar]
  7. Bekierkunst, A. & Yarkoni, E. ( 1973; ). Granulomatous hypersensitivity to trehalose-6,6′-dimycolate (cord factor) in mice infected with BCG. Infect Immun 7, 631–638.
    [Google Scholar]
  8. Bloch, H. ( 1950; ). Studies on the virulence of tubercle bacilli; the relationship of the physiological state of the organisms to their pathogenicity. J Exp Med 92, 507–526.[CrossRef]
    [Google Scholar]
  9. Bloch, H. & Noll, H. ( 1955; ). Studies on the virulence of tubercle bacilli; the effect of cord factor on murine tuberculosis. Br J Exp Pathol 36, 8–17.
    [Google Scholar]
  10. Borders, C. W., Courtney, A., Ronen, K., Pilar Laborde-Lahoz, M., Guidry, T. V., Hwang, S. A., Olsen, M., Hunter, R. L., Hollmann, T. J. & other authors ( 2005; ). Requisite role for complement C5 and the C5a receptor in granulomatous response to mycobacterial glycolipid trehalose 6,6′-dimycolate. Scand J Immunol 62, 123–130.[CrossRef]
    [Google Scholar]
  11. Bustin, S. A. ( 2000; ). Absolute quantification of mRNA using real-time reverse transcription polymerase chain reaction assays. J Mol Endocrinol 25, 169–193.[CrossRef]
    [Google Scholar]
  12. Caruso, A. M., Serbina, N., Klein, E., Triebold, K., Bloom, B. R. & Flynn, J. L. ( 1999; ). Mice deficient in CD4 T cells have only transiently diminished levels of IFN-gamma, yet succumb to tuberculosis. J Immunol 162, 5407–5416.
    [Google Scholar]
  13. Copenhaver, R. H., Sepulveda, E., Armitige, L. Y., Actor, J. K., Wanger, A., Norris, S. J., Hunter, R. L. & Jagannath, C. ( 2004; ). A mutant of Mycobacterium tuberculosis H37Rv that lacks expression of antigen 85A is attenuated in mice but retains vaccinogenic potential. Infect Immun 72, 7084–7095.[CrossRef]
    [Google Scholar]
  14. Davidsen, J., Rosenkrands, I., Christensen, D., Vangala, A., Kirby, D., Perrie, Y., Agger, E. M. & Andersen, P. ( 2005; ). Characterization of cationic liposomes based on dimethyldioctadecylammonium and synthetic cord factor from M. tuberculosis (trehalose 6,6′-dibehenate) – a novel adjuvant inducing both strong CMI and antibody responses. Biochim Biophys Acta 1718, 22–31.[CrossRef]
    [Google Scholar]
  15. Flynn, J. L. & Chan, J. ( 2001; ). Immunology of tuberculosis. Annu Rev Immunol 19, 93–129.[CrossRef]
    [Google Scholar]
  16. Geisel, R. E., Sakamoto, K., Russell, D. G. & Rhoades, E. R. ( 2005; ). In vivo activity of released cell wall lipids of Mycobacterium bovis bacillus Calmette-Guérin is due principally to trehalose mycolates. J Immunol 174, 5007–5015.[CrossRef]
    [Google Scholar]
  17. Glickman, M. S., Cox, J. S. & Jacobs, W. R., Jr ( 2000; ). A novel mycolic acid cyclopropane synthetase is required for cording, persistence, and virulence of Mycobacterium tuberculosis. Mol Cell 5, 717–727.[CrossRef]
    [Google Scholar]
  18. Grotzke, J. E. & Lewinsohn, D. M. ( 2005; ). Role of CD8+ T lymphocytes in control of Mycobacterium tuberculosis infection. Microbes Infect 7, 776–788.[CrossRef]
    [Google Scholar]
  19. Guidry, T. V., Olsen, M., Kil, K. S., Hunter, R. L., Jr, Geng, Y. J. & Actor, J. K. ( 2004; ). Failure of CD1D−/− mice to elicit hypersensitive granulomas to mycobacterial cord factor trehalose 6,6′-dimycolate. J Interferon Cytokine Res 24, 362–371.[CrossRef]
    [Google Scholar]
  20. Guidry, T. V., Hunter, R. L. & Actor, J. K. ( 2006; ). CD3+ cells transfer hypersensitive granulomatous response to mycobacterial glycolipid trehalose 6,6′-dimycolate in mice. Microbiology 152, 3765–3775.[CrossRef]
    [Google Scholar]
  21. Heid, C. A., Stevens, J., Livak, K. J. & Williams, P. M. ( 1996; ). Real time quantitative PCR. Genome Res 6, 986–994.[CrossRef]
    [Google Scholar]
  22. Hunter, R. L., Olsen, M., Jagannath, C. & Actor, J. K. ( 2006a; ). Trehalose 6,6′-dimycolate and lipid in the pathogenesis of caseating granulomas of tuberculosis in mice. Am J Pathol 168, 1249–1261.[CrossRef]
    [Google Scholar]
  23. Hunter, R. L., Olsen, M. R., Jagannath, C. & Actor, J. K. ( 2006b; ). Multiple roles of cord factor in the pathogenesis of primary, secondary, and cavitary tuberculosis, including a revised description of the pathology of secondary disease. Ann Clin Lab Sci 36, 371–386.
    [Google Scholar]
  24. Indrigo, J., Hunter, R. L., Jr & Actor, J. K. ( 2002; ). Influence of trehalose 6,6′-dimycolate (TDM) during mycobacterial infection of bone marrow macrophages. Microbiology 148, 1991–1998.
    [Google Scholar]
  25. Indrigo, J., Hunter, R. L., Jr & Actor, J. K. ( 2003; ). Cord factor trehalose 6,6′-dimycolate (TDM) mediates trafficking events during mycobacterial infection of murine macrophages. Microbiology 149, 2049–2059.[CrossRef]
    [Google Scholar]
  26. Kobayashi, K., Kaneda, K. & Kasama, T. ( 2001; ). Immunopathogenesis of delayed-type hypersensitivity. Microsc Res Tech 53, 241–245.[CrossRef]
    [Google Scholar]
  27. Kolattukudy, P. E., Fernandes, N. D., Azad, A. K., Fitzmaurice, A. M. & Sirakova, T. D. ( 1997; ). Biochemistry and molecular genetics of cell-wall lipid biosynthesis in mycobacteria. Mol Microbiol 24, 263–270.[CrossRef]
    [Google Scholar]
  28. Lima, V. M., Bonato, V. L., Lima, K. M., Dos Santos, S. A., Dos Santos, R. R., Gonçalves, E. D., Faccioli, L. H., Brandão, I. T., Rodrigues-Junior, J. M. & Silva, C. L. ( 2001; ). Role of trehalose dimycolate in recruitment of cells and modulation of production of cytokines and NO in tuberculosis. Infect Immun 69, 5305–5312.[CrossRef]
    [Google Scholar]
  29. Muller, I., Cobbold, S. P., Waldmann, H. & Kaufmann, S. H. ( 1987; ). Impaired resistance to Mycobacterium tuberculosis infection after selective in vivo depletion of L3T4+ and Lyt-2+ T cells. Infect Immun 55, 2037–2041.
    [Google Scholar]
  30. Noll, H., Bloch, H., Asselineau, J. & Lederer, E. ( 1956; ). The chemical structure of the cord factor of Mycobacterium tuberculosis. Biochim Biophys Acta 20, 299–309.[CrossRef]
    [Google Scholar]
  31. Oiso, R., Fujiwara, N., Yamagami, H., Maeda, S., Matsumoto, S., Nakamura, S., Oshitani, N., Matsumoto, T., Arakawa, T. & Kobayashi, K. ( 2005; ). Mycobacterial trehalose 6,6′-dimycolate preferentially induces type 1 helper T cell responses through signal transducer and activator of transcription 4 protein. Microb Pathog 39, 35–43.[CrossRef]
    [Google Scholar]
  32. Perez, R. L., Roman, J., Roser, S., Little, C., Olsen, M., Indrigo, J., Hunter, R. L. & Actor, J. K. ( 2000; ). Cytokine message and protein expression during lung granuloma formation and resolution induced by the mycobacterial cord factor trehalose-6,6′-dimycolate. J Interferon Cytokine Res 20, 795–804.[CrossRef]
    [Google Scholar]
  33. Rao, V., Fujiwara, N., Porcelli, S. A. & Glickman, M. S. ( 2005; ). Mycobacterium tuberculosis controls host innate immune activation through cyclopropane modification of a glycolipid effector molecule. J Exp Med 201, 535–543.[CrossRef]
    [Google Scholar]
  34. Rao, V., Gao, F., Chen, B., Jacobs, W. R., Jr & Glickman, M. S. ( 2006; ). Trans-cyclopropanation of mycolic acids on trehalose dimycolate suppresses Mycobacterium tuberculosis-induced inflammation and virulence. J Clin Invest 116, 1660–1667.[CrossRef]
    [Google Scholar]
  35. Reiling, N., Holscher, C., Fehrenbach, A., Kroger, S., Kirschning, C. J., Goyert, S. & Ehlers, S. ( 2002; ). Cutting edge: Toll-like receptor (TLR)2- and TLR4-mediated pathogen recognition in resistance to airborne infection with Mycobacterium tuberculosis. J Immunol 169, 3480–3484.[CrossRef]
    [Google Scholar]
  36. Rhoades, E. R., Geisel, R. E., Butcher, B. A., McDonough, S. & Russell, D. G. ( 2005; ). Cell wall lipids from Mycobacterium bovis BCG are inflammatory when inoculated within a gel matrix: characterization of a new model of the granulomatous response to mycobacterial components. Tuberculosis (Edinb) 85, 159–176.[CrossRef]
    [Google Scholar]
  37. Roura-Mir, C., Wang, L., Cheng, T. Y., Matsunaga, I., Dascher, C. C., Peng, S. L., Fenton, M. J., Kirschning, C. & Moody, D. B. ( 2005; ). Mycobacterium tuberculosis regulates CD1 antigen presentation pathways through TLR-2. J Immunol 175, 1758–1766.[CrossRef]
    [Google Scholar]
  38. Russell, D. G. ( 2007; ). Who puts the tubercle in tuberculosis? Nat Rev Microbiol 5, 39–47.[CrossRef]
    [Google Scholar]
  39. Scanga, C. A., Mohan, V. P., Yu, K., Joseph, H., Tanaka, K., Chan, J. & Flynn, J. L. ( 2000; ). Depletion of CD4+ T cells causes reactivation of murine persistent tuberculosis despite continued expression of interferon gamma and nitric oxide synthase 2. J Exp Med 192, 347–358.[CrossRef]
    [Google Scholar]
  40. Seder, R. A., Gazzinelli, R., Sher, A. & Paul, W. E. ( 1993; ). Interleukin 12 acts directly on CD4+ T cells to enhance priming for interferon gamma production and diminishes interleukin 4 inhibition of such priming. Proc Natl Acad Sci U S A 90, 10188–10192.[CrossRef]
    [Google Scholar]
  41. Seggev, J., Goren, M. B., Carr, R. I. & Kirkpatrick, C. H. ( 1982; ). Interstitial and hemorrhagic pneumonitis induced by mycobacterial trehalose dimycolate. Am J Pathol 106, 348–355.
    [Google Scholar]
  42. Seggev, J. S., Goren, M. B. & Kirkpatrick, C. H. ( 1984; ). The pathogenesis of trehalose dimycolate-induced interstitial pneumonitis. III. Evidence for a role for T lymphocytes. Cell Immunol 85, 428–435.[CrossRef]
    [Google Scholar]
  43. Serbina, N. V. & Flynn, J. L. ( 2001; ). CD8+ T cells participate in the memory immune response to Mycobacterium tuberculosis. Infect Immun 69, 4320–4328.[CrossRef]
    [Google Scholar]
  44. Serbina, N. V., Lazarevic, V. & Flynn, J. L. ( 2001; ). CD4+ T cells are required for the development of cytotoxic CD8+ T cells during Mycobacterium tuberculosis infection. J Immunol 167, 6991–7000.[CrossRef]
    [Google Scholar]
  45. WHO ( 2006; ). Global tuberculosis control. Surveillance, planning, financing. In The World Health Report 2006. Geneva: World Health Organization.
  46. Yamagami, H., Matsumoto, T., Fujiwara, N., Arakawa, T., Kaneda, K., Yano, I. & Kobayashi, K. ( 2001; ). Trehalose 6,6′-dimycolate (cord factor) of Mycobacterium tuberculosis induces foreign-body- and hypersensitivity-type granulomas in mice. Infect Immun 69, 810–815.[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.2007/010850-0
Loading
/content/journal/micro/10.1099/mic.0.2007/010850-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error