1887

Abstract

The granulomatous response is a characteristic histological feature of infection responsible for organism containment. The development of cell-mediated immunity is essential for protection against disease, as well as being required for maintenance of the sequestering granulomatous response. Trehalose 6,6′-dimycolate (TDM; cord factor), a glycolipid associated with the cell wall of mycobacteria, is implicated as a key immunogenic component in infection. Models of TDM-induced hypersensitive granulomatous response have similar pathologies to that of active tuberculosis infection. Prior immunization (sensitization) of mice with TDM results in exacerbated histological damage, inflammation and lymphocytic infiltration upon subsequent TDM challenge. Adoptive transfer experiments were performed to ascertain the cell phenotype governing this response; CD4 cells were identified as critical for development of related pathology. Mice receiving CD4 cells from donor TDM-immunized mice demonstrated significantly increased production of Th1-type cytokines IFN- and IL-12 within the lung upon subsequent TDM challenge. Control groups receiving naïve CD4 cells, or CD8 or CD19 cells isolated from TDM-immunized donors, did not exhibit an exacerbated response. The identified CD4 cells isolated from TDM-immunized mice produced significant amounts of IFN- and IL-2 when exposed to TDM-pulsed macrophages . These experiments provide further evidence for involvement of a cell-mediated response in TDM-induced granuloma formation, which mimics pathological damage elicited during infection.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.2007/010850-0
2007-10-01
2020-08-15
Loading full text...

Full text loading...

/deliver/fulltext/micro/153/10/3360.html?itemId=/content/journal/micro/10.1099/mic.0.2007/010850-0&mimeType=html&fmt=ahah

References

  1. Actor J. K., Kuffner T., Dezzutti C. S., Hunter R. L., McNicholl J. M.. 1998; A flash-type bioluminescent immunoassay that is more sensitive than radioimaging: quantitative detection of cytokine cDNA in activated and resting human cells. J Immunol Methods211:65–77
    [Google Scholar]
  2. Actor J. K., Olsen M., Jagannath C., Hunter R. L.. 1999; Relationship of survival, organism containment, and granuloma formation in acute murine tuberculosis. J Interferon Cytokine Res19:1183–1193
    [Google Scholar]
  3. Actor J. K., Olsen M., Hunter R. L. Jr, Geng Y. J.. 2001; Dysregulated response to mycobacterial cord factor trehalose-6,6′-dimycolate in CD1D−/− mice. J Interferon Cytokine Res21:1089–1096
    [Google Scholar]
  4. Armitige L. Y., Jagannath C., Wanger A. R., Norris S. J.. 2000; Disruption of the genes encoding antigen 85A and antigen 85B of Mycobacterium tuberculosis H37Rv: effect on growth in culture and in macrophages. Infect Immun68:767–778
    [Google Scholar]
  5. Behling C. A., Perez R. L., Kidd M. R., Staton G. W. Jr, Hunter R. L.. 1993; Induction of pulmonary granulomas, macrophage procoagulant activity, and tumor necrosis factor-alpha by trehalose glycolipids. Ann Clin Lab Sci23:256–266
    [Google Scholar]
  6. Bekierkunst A.. 1968; Acute granulomatous response produced in mice by trehalose-6,6′-dimycolate. J Bacteriol96:958–961
    [Google Scholar]
  7. Bekierkunst A., Yarkoni E.. 1973; Granulomatous hypersensitivity to trehalose-6,6′-dimycolate (cord factor) in mice infected with BCG. Infect Immun7:631–638
    [Google Scholar]
  8. Bloch H.. 1950; Studies on the virulence of tubercle bacilli; the relationship of the physiological state of the organisms to their pathogenicity. J Exp Med92:507–526
    [Google Scholar]
  9. Bloch H., Noll H.. 1955; Studies on the virulence of tubercle bacilli; the effect of cord factor on murine tuberculosis. Br J Exp Pathol36:8–17
    [Google Scholar]
  10. Borders C. W., Courtney A., Ronen K., Pilar Laborde-Lahoz M., Guidry T. V., Hwang S. A., Olsen M., Hunter R. L., Hollmann T. J.. other authors 2005; Requisite role for complement C5 and the C5a receptor in granulomatous response to mycobacterial glycolipid trehalose 6,6′-dimycolate. Scand J Immunol62:123–130
    [Google Scholar]
  11. Bustin S. A.. 2000; Absolute quantification of mRNA using real-time reverse transcription polymerase chain reaction assays. J Mol Endocrinol25:169–193
    [Google Scholar]
  12. Caruso A. M., Serbina N., Klein E., Triebold K., Bloom B. R., Flynn J. L.. 1999; Mice deficient in CD4 T cells have only transiently diminished levels of IFN-gamma, yet succumb to tuberculosis. J Immunol162:5407–5416
    [Google Scholar]
  13. Copenhaver R. H., Sepulveda E., Armitige L. Y., Actor J. K., Wanger A., Norris S. J., Hunter R. L., Jagannath C.. 2004; A mutant of Mycobacterium tuberculosis H37Rv that lacks expression of antigen 85A is attenuated in mice but retains vaccinogenic potential. Infect Immun72:7084–7095
    [Google Scholar]
  14. Davidsen J., Rosenkrands I., Christensen D., Vangala A., Kirby D., Perrie Y., Agger E. M., Andersen P.. 2005; Characterization of cationic liposomes based on dimethyldioctadecylammonium and synthetic cord factor from M. tuberculosis (trehalose 6,6′-dibehenate) – a novel adjuvant inducing both strong CMI and antibody responses. Biochim Biophys Acta 1718;22–31
    [Google Scholar]
  15. Flynn J. L., Chan J.. 2001; Immunology of tuberculosis. Annu Rev Immunol19:93–129
    [Google Scholar]
  16. Geisel R. E., Sakamoto K., Russell D. G., Rhoades E. R.. 2005; In vivo activity of released cell wall lipids of Mycobacterium bovis bacillus Calmette-Guérin is due principally to trehalose mycolates. J Immunol174:5007–5015
    [Google Scholar]
  17. Glickman M. S., Cox J. S., Jacobs W. R. Jr. 2000; A novel mycolic acid cyclopropane synthetase is required for cording, persistence, and virulence of Mycobacterium tuberculosis . Mol Cell5:717–727
    [Google Scholar]
  18. Grotzke J. E., Lewinsohn D. M.. 2005; Role of CD8+ T lymphocytes in control of Mycobacterium tuberculosis infection. Microbes Infect7:776–788
    [Google Scholar]
  19. Guidry T. V., Olsen M., Kil K. S., Hunter R. L. Jr, Geng Y. J., Actor J. K.. 2004; Failure of CD1D−/− mice to elicit hypersensitive granulomas to mycobacterial cord factor trehalose 6,6′-dimycolate. J Interferon Cytokine Res24:362–371
    [Google Scholar]
  20. Guidry T. V., Hunter R. L., Actor J. K.. 2006; CD3+ cells transfer hypersensitive granulomatous response to mycobacterial glycolipid trehalose 6,6′-dimycolate in mice. Microbiology152:3765–3775
    [Google Scholar]
  21. Heid C. A., Stevens J., Livak K. J., Williams P. M.. 1996; Real time quantitative PCR. Genome Res6:986–994
    [Google Scholar]
  22. Hunter R. L., Olsen M., Jagannath C., Actor J. K.. 2006a; Trehalose 6,6′-dimycolate and lipid in the pathogenesis of caseating granulomas of tuberculosis in mice. Am J Pathol168:1249–1261
    [Google Scholar]
  23. Hunter R. L., Olsen M. R., Jagannath C., Actor J. K.. 2006b; Multiple roles of cord factor in the pathogenesis of primary, secondary, and cavitary tuberculosis, including a revised description of the pathology of secondary disease. Ann Clin Lab Sci36:371–386
    [Google Scholar]
  24. Indrigo J., Hunter R. L. Jr, Actor J. K.. 2002; Influence of trehalose 6,6′-dimycolate (TDM) during mycobacterial infection of bone marrow macrophages. Microbiology148:1991–1998
    [Google Scholar]
  25. Indrigo J., Hunter R. L. Jr, Actor J. K.. 2003; Cord factor trehalose 6,6′-dimycolate (TDM) mediates trafficking events during mycobacterial infection of murine macrophages. Microbiology149:2049–2059
    [Google Scholar]
  26. Kobayashi K., Kaneda K., Kasama T.. 2001; Immunopathogenesis of delayed-type hypersensitivity. Microsc Res Tech53:241–245
    [Google Scholar]
  27. Kolattukudy P. E., Fernandes N. D., Azad A. K., Fitzmaurice A. M., Sirakova T. D.. 1997; Biochemistry and molecular genetics of cell-wall lipid biosynthesis in mycobacteria. Mol Microbiol24:263–270
    [Google Scholar]
  28. Lima V. M., Bonato V. L., Lima K. M., Dos Santos S. A., Dos Santos R. R., Gonçalves E. D., Faccioli L. H., Brandão I. T., Rodrigues-Junior J. M., Silva C. L.. 2001; Role of trehalose dimycolate in recruitment of cells and modulation of production of cytokines and NO in tuberculosis. Infect Immun69:5305–5312
    [Google Scholar]
  29. Muller I., Cobbold S. P., Waldmann H., Kaufmann S. H.. 1987; Impaired resistance to Mycobacterium tuberculosis infection after selective in vivo depletion of L3T4+ and Lyt-2+ T cells. Infect Immun55:2037–2041
    [Google Scholar]
  30. Noll H., Bloch H., Asselineau J., Lederer E.. 1956; The chemical structure of the cord factor of Mycobacterium tuberculosis . Biochim Biophys Acta20:299–309
    [Google Scholar]
  31. Oiso R., Fujiwara N., Yamagami H., Maeda S., Matsumoto S., Nakamura S., Oshitani N., Matsumoto T., Arakawa T., Kobayashi K.. 2005; Mycobacterial trehalose 6,6′-dimycolate preferentially induces type 1 helper T cell responses through signal transducer and activator of transcription 4 protein. Microb Pathog39:35–43
    [Google Scholar]
  32. Perez R. L., Roman J., Roser S., Little C., Olsen M., Indrigo J., Hunter R. L., Actor J. K.. 2000; Cytokine message and protein expression during lung granuloma formation and resolution induced by the mycobacterial cord factor trehalose-6,6′-dimycolate. J Interferon Cytokine Res20:795–804
    [Google Scholar]
  33. Rao V., Fujiwara N., Porcelli S. A., Glickman M. S.. 2005; Mycobacterium tuberculosis controls host innate immune activation through cyclopropane modification of a glycolipid effector molecule. J Exp Med201:535–543
    [Google Scholar]
  34. Rao V., Gao F., Chen B., Jacobs W. R. Jr, Glickman M. S.. 2006; Trans-cyclopropanation of mycolic acids on trehalose dimycolate suppresses Mycobacterium tuberculosis -induced inflammation and virulence. J Clin Invest116:1660–1667
    [Google Scholar]
  35. Reiling N., Holscher C., Fehrenbach A., Kroger S., Kirschning C. J., Goyert S., Ehlers S.. 2002; Cutting edge: Toll-like receptor (TLR)2- and TLR4-mediated pathogen recognition in resistance to airborne infection with Mycobacterium tuberculosis . J Immunol169:3480–3484
    [Google Scholar]
  36. Rhoades E. R., Geisel R. E., Butcher B. A., McDonough S., Russell D. G.. 2005; Cell wall lipids from Mycobacterium bovis BCG are inflammatory when inoculated within a gel matrix: characterization of a new model of the granulomatous response to mycobacterial components. Tuberculosis (Edinb85:159–176
    [Google Scholar]
  37. Roura-Mir C., Wang L., Cheng T. Y., Matsunaga I., Dascher C. C., Peng S. L., Fenton M. J., Kirschning C., Moody D. B.. 2005; Mycobacterium tuberculosis regulates CD1 antigen presentation pathways through TLR-2. J Immunol175:1758–1766
    [Google Scholar]
  38. Russell D. G.. 2007; Who puts the tubercle in tuberculosis?. Nat Rev Microbiol5:39–47
    [Google Scholar]
  39. Scanga C. A., Mohan V. P., Yu K., Joseph H., Tanaka K., Chan J., Flynn J. L.. 2000; Depletion of CD4+ T cells causes reactivation of murine persistent tuberculosis despite continued expression of interferon gamma and nitric oxide synthase 2. J Exp Med192:347–358
    [Google Scholar]
  40. Seder R. A., Gazzinelli R., Sher A., Paul W. E.. 1993; Interleukin 12 acts directly on CD4+ T cells to enhance priming for interferon gamma production and diminishes interleukin 4 inhibition of such priming. Proc Natl Acad Sci U S A90:10188–10192
    [Google Scholar]
  41. Seggev J., Goren M. B., Carr R. I., Kirkpatrick C. H.. 1982; Interstitial and hemorrhagic pneumonitis induced by mycobacterial trehalose dimycolate. Am J Pathol106:348–355
    [Google Scholar]
  42. Seggev J. S., Goren M. B., Kirkpatrick C. H.. 1984; The pathogenesis of trehalose dimycolate-induced interstitial pneumonitis. III. Evidence for a role for T lymphocytes. Cell Immunol85:428–435
    [Google Scholar]
  43. Serbina N. V., Flynn J. L.. 2001; CD8+ T cells participate in the memory immune response to Mycobacterium tuberculosis . Infect Immun69:4320–4328
    [Google Scholar]
  44. Serbina N. V., Lazarevic V., Flynn J. L.. 2001; CD4+ T cells are required for the development of cytotoxic CD8+ T cells during Mycobacterium tuberculosis infection. J Immunol167:6991–7000
    [Google Scholar]
  45. WHO 2006; Global tuberculosis control. Surveillance, planning, financing. In The World Health Report 2006 Geneva: World Health Organization;
  46. Yamagami H., Matsumoto T., Fujiwara N., Arakawa T., Kaneda K., Yano I., Kobayashi K.. 2001; Trehalose 6,6′-dimycolate (cord factor) of Mycobacterium tuberculosis induces foreign-body- and hypersensitivity-type granulomas in mice. Infect Immun69:810–815
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.2007/010850-0
Loading
/content/journal/micro/10.1099/mic.0.2007/010850-0
Loading

Data & Media loading...

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error