1887

Abstract

This study was intended to determine the osmoadaptation strategy of , an extremely salt-tolerant melanized ascomycetous fungus that can grow at 0–5.1 M NaCl. It has been shown previously that glycerol is the major compatible solute in actively growing . This study showed that the exponentially growing cells also contained erythritol, arabitol and mannitol at optimal growth salinities, but only glycerol and erythritol at maximal salinities. The latter two were both demonstrated to be major compatible solutes in , as their decrease correlated with the severity of hypoosmotic shock. Besides higher amounts of erythritol and lower amounts of glycerol, stationary-phase cells also contained mycosporine-glutaminol-glucoside, which might act as a complementary compatible solute. is constitutively melanized under various salinity conditions. Ultrastructural study showed localization of melanin in the outer parts of the cell wall as a distinct layer at optimal salinity (0.86 M NaCl), whereas cell-wall melanization diminished at higher salinities. The role of melanized cell wall in the effective retention of glycerol is already known, and was also demonstrated in by lower retention of glycerol in cells with blocked melanization compared to melanized cells. However, these non-melanized cells compensated for the lower amounts of glycerol with higher amounts of erythritol and arabitol. We hypothesize that melanization is effective in reducing the permeability of its cell wall to its major compatible solute glycerol, which might be one of the features that helps it tolerate a wider range of salt concentrations than most organisms.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.2007/010751-0
2007-12-01
2019-10-20
Loading full text...

Full text loading...

/deliver/fulltext/micro/153/12/4261.html?itemId=/content/journal/micro/10.1099/mic.0.2007/010751-0&mimeType=html&fmt=ahah

References

  1. Abadias, M., Teixidó, N., Usall, J., Viñas, I. & Magan, N. ( 2000; ). Solute stresses affect growth patterns, endogenous water potentials and accumulation of sugars and sugar alcohols in cells of the biocontrol yeast Candida sake. J Appl Microbiol 89, 1009–1017.[CrossRef]
    [Google Scholar]
  2. Adler, L. & Gustafsson, L. ( 1980; ). Polyhydric alcohol production and intracellular amino acid pool in relation to halotolerance of the yeast Debaryomyces hansenii. Arch Microbiol 124, 123–130.
    [Google Scholar]
  3. Adler, L., Blomberg, A. & Nilsson, A. ( 1985; ). Glycerol metabolism and osmoregulation in the salt-tolerant yeast Debaryomyces hansenii. J Bacteriol 162, 300–306.
    [Google Scholar]
  4. Andersson, A., Jordan, D., Schneider, G. & Lindqvist, Y. ( 1996; ). Crystal structure of the ternary complex of 1,3,8-trihydroxynaphthalene reductase from Magnaporthe grisea with NADPH and an active-site inhibitor. Structure 4, 1161–1170.[CrossRef]
    [Google Scholar]
  5. André, L., Nilsson, A. & Adler, L. ( 1988; ). The role of glycerol in osmotolerance of the yeast Debaryomyces hansenii. J Gen Microbiol 134, 669–677.
    [Google Scholar]
  6. Andreishcheva, E. N., Isakova, E. P., Sidorov, N. N., Abramova, N. B., Ushakova, N. A., Shaposhnikov, G. L., Soares, M. I. M. & Zvyagilskaya, R. A. ( 1999; ). Adaptation to salt stress in a salt-tolerant strain of the yeast Yarrowia lipolytica. Biochemistry (Moscow) 64, 1061–1067.
    [Google Scholar]
  7. Bandaranayake, W. M. ( 1998; ). Mycosporines: are they nature's sunscreens? Nat Prod Rep 15, 159–172.[CrossRef]
    [Google Scholar]
  8. Beever, R. E. & Laracy, E. P. ( 1986; ). Osmotic adjustment in the filamentous fungus Aspergillus nidulans. J Bacteriol 168, 1358–1365.
    [Google Scholar]
  9. Ben-Amotz, A. & Avron, M. ( 1973; ). The role of glycerol in the osmotic regulation of the halophilic alga Dunaliella parva. Plant Physiol 51, 875–878.[CrossRef]
    [Google Scholar]
  10. Bligh, E. G. & Dyer, W. J. ( 1959; ). A rapid method of lipid extraction and purification. Can J Biochem Physiol 37, 911–917.[CrossRef]
    [Google Scholar]
  11. Blomberg, A. ( 2000; ). Metabolic surprises in Saccharomyces cerevisiae during adaptation to saline conditions: questions, some answers and a model. FEMS Microbiol Lett 182, 1–8.[CrossRef]
    [Google Scholar]
  12. Blomberg, A. & Adler, L. ( 1992; ). Physiology of osmotolerance in fungi. Adv Microb Physiol 33, 145–212.
    [Google Scholar]
  13. Bouillant, M.-L., Pittet, J.-L., Bernillon, J., Favre-Bonvin, J. & Arpin, N. ( 1981; ). Mycosporins from Ascochyta pisi, Cladosporium herbarum and Septoria nodorum. Phytochemistry 20, 2705–2707.[CrossRef]
    [Google Scholar]
  14. Brown, A. D. ( 1976; ). Microbial water stress. Bacteriol Rev 40, 803–846.
    [Google Scholar]
  15. Brown, F. F., Sussman, I., Avron, M. & Degani, H. ( 1982; ). NMR studies of glycerol permeability in lipid vesicles, erythrocytes and the alga Dunaliella. Biochim Biophys Acta 690, 165–173.[CrossRef]
    [Google Scholar]
  16. Butinar, L., Sonjak, S., Zalar, P., Plemenitaš, A. & Gunde-Cimerman, N. ( 2005; ). Population dynamics of melanized halophilic fungi in solar salterns. Botanica Marina 48, 73–79.
    [Google Scholar]
  17. Cantrell, S. A., Casillas-Martínez, L. & Molina, M. ( 2006; ). Characterization of fungi from hypersaline environments of solar salterns using morphological and molecular techniques. Mycol Res 110, 962–970.[CrossRef]
    [Google Scholar]
  18. Davis, D. J., Burlak, C. & Money, N. P. ( 2000; ). Osmotic pressure of fungal compatible osmolytes. Mycol Res 104, 800–804.[CrossRef]
    [Google Scholar]
  19. de Jong, J. C., McCormack, B. J., Smirnoff, N. & Talbot, N. J. ( 1997; ). Glycerol generates turgor in rice blast. Nature 389, 244–245.[CrossRef]
    [Google Scholar]
  20. Diano, A., Bekker-Jensen, S., Dynesen, J. & Nielsen, J. ( 2006; ). Polyol synthesis in Aspergillus niger: influence of oxygen availability, carbon and nitrogen sources on the metabolism. Biotechnol Bioeng 94, 899–908.[CrossRef]
    [Google Scholar]
  21. Galinski, E. A. ( 1995; ). Osmoadaptation in bacteria. Adv Microb Physiol 37, 272–328.
    [Google Scholar]
  22. Galinski, E. A. & Herzog, R. M. ( 1990; ). The role of trehalose as a substitute for nitrogen-containing compatible solutes (Ectothiorhodospira halochloris). Arch Microbiol 153, 607–613.[CrossRef]
    [Google Scholar]
  23. Galinski, E. A. & Trüper, H. G. ( 1994; ). Microbial behaviour in salt-stressed ecosystems. FEMS Microbiol Rev 15, 95–108.[CrossRef]
    [Google Scholar]
  24. Gimmler, H. & Hartung, W. ( 1988; ). Low permeability of the plasma membrane of Dunaliella parva for solutes. J Plant Physiol 133, 165–172.[CrossRef]
    [Google Scholar]
  25. Gunde-Cimerman, N., Zalar, P., de Hoog, S. & Plemenitaš, A. ( 2000; ). Hypersaline waters in salterns – natural ecological niches for halophilic black yeasts. FEMS Microbiol Ecol 32, 235–240.
    [Google Scholar]
  26. Hohmann, S. ( 2002; ). Osmotic stress signaling and osmoadaptation in yeasts. Microbiol Mol Biol Rev 66, 300–372.[CrossRef]
    [Google Scholar]
  27. Jacobson, E. S. & Ikeda, R. ( 2005; ). Effect of melanization upon porosity of the cryptococcal cell wall. Med Mycol 43, 327–333.[CrossRef]
    [Google Scholar]
  28. Kayingo, G., Kilian, S. G. & Prior, B. A. ( 2001; ). Conservation and release of osmolytes by yeasts during hypo-osmotic stress. Arch Microbiol 177, 29–35.[CrossRef]
    [Google Scholar]
  29. Kim, S.-Y., Lee, K.-H., Kim, J.-H. & Oh, D.-K. ( 1997; ). Erythritol production by controlling osmotic pressure in Trigonopsis variabilis. Biotechnol Lett 19, 727–729.[CrossRef]
    [Google Scholar]
  30. Klipp, E., Nordlander, B., Kruger, R., Gennemark, P. & Hohmann, S. ( 2005; ). Integrative model of the response of yeast to osmotic shock. Nat Biotechnol 23, 975–982.[CrossRef]
    [Google Scholar]
  31. Kogej, T., Wheeler, M. H., Lanišnik Rižner, T. & Gunde-Cimerman, N. ( 2004; ). Evidence for 1,8-dihydroxynaphthalene melanin in three halophilic black yeasts grown under saline and non-saline conditions. FEMS Microbiol Lett 232, 203–209.[CrossRef]
    [Google Scholar]
  32. Kogej, T., Ramos, J., Plemenitaš, A. & Gunde-Cimerman, N. ( 2005; ). The halophilic fungus Hortaea werneckii and the halotolerant fungus Aureobasidium pullulans maintain low intracellular cation concentrations in hypersaline environments. Appl Environ Microbiol 71, 6600–6605.[CrossRef]
    [Google Scholar]
  33. Kogej, T., Gorbushina, A. A. & Gunde-Cimerman, N. ( 2006a; ). Hypersaline conditions induce changes in cell-wall melanization and colony structure in a halophilic and a xerophilic black yeast species of the genus Trimmatostroma. Mycol Res 110, 713–724.[CrossRef]
    [Google Scholar]
  34. Kogej, T., Gostinčar, C., Volkmann, M., Gorbushina, A. A. & Gunde-Cimerman, N. ( 2006b; ). Mycosporines in extremophilic fungi – novel complementary osmolytes? Environ Chem 3, 105–110.[CrossRef]
    [Google Scholar]
  35. Libkind, D., Pérez, P., Sommaruga, R., Diéguez, M. d. C., Ferraro, M., Brizzio, S., Zagarese, H. & van Broock, M. ( 2004; ). Constitutive and UV-inducible synthesis of photoprotective compounds (carotenoids and mycosporines) by freshwater yeasts. Photochem Photobiol Sci 3, 281–286.[CrossRef]
    [Google Scholar]
  36. Luyten, K., Albertyn, J., Skibbe, W. F., Prior, B. A., Ramos, J., Thevelein, J. M. & Hohmann, S. ( 1995; ). Fps1, a yeast member of the MIP family of channel proteins, is a facilitator for glycerol uptake and efflux and is inactive under osmotic stress. EMBO J 14, 1360–1371.
    [Google Scholar]
  37. Mager, W. H. & Siderius, M. ( 2002; ). Novel insights into the osmotic stress response of yeast. FEMS Yeast Res 2, 251–257.[CrossRef]
    [Google Scholar]
  38. Méjanelle, L., López, J. F., Gunde-Cimerman, N. & Grimalt, J. O. ( 2000; ). Sterols of melanized fungi from hypersaline environments. Org Geochem 31, 1031–1040.[CrossRef]
    [Google Scholar]
  39. Nesci, A., Etcheverry, M. & Magan, N. ( 2004; ). Osmotic and matric potential effects on growth, sugar alcohol and sugar accumulation by Aspergillus section Flavi strains from Argentina. J Appl Microbiol 96, 965–972.[CrossRef]
    [Google Scholar]
  40. Nobre, M. F. & da Costa, M. S. ( 1985; ). The accumulation of polyols by the yeast Debaryomyces hansenii in response to water stress. Can J Microbiol 31, 1061–1064.[CrossRef]
    [Google Scholar]
  41. Oren, A. ( 1997; ). Mycosporine-like amino acids as osmotic solutes in a community of halophilic cyanobacteria. Geomicrobiol J 14, 231–240.[CrossRef]
    [Google Scholar]
  42. Oren, A. ( 1999; ). Bioenergetic aspects of halophilism. Microbiol Mol Biol Rev 63, 334–348.
    [Google Scholar]
  43. Oren, A. ( 2002; ). Halophilic Microorganisms and their Environments. Dordrecht: Kluwer Academic Publishers.
  44. Oren, A. & Gunde-Cimerman, N. ( 2007; ). Mycosporines and mycosporine-like amino acids: UV protectants or multipurpose secondary metabolites? FEMS Microbiol Lett 269, 1–10.[CrossRef]
    [Google Scholar]
  45. Petrovič, U., Gunde-Cimerman, N. & Plemenitaš, A. ( 2002; ). Cellular responses to environmental salinity in the halophilic black yeast Hortaea werneckii. Mol Microbiol 45, 665–672.[CrossRef]
    [Google Scholar]
  46. Pfyffer, G. E., Pfyffer, B. U. & Rast, D. M. ( 1986; ). The polyol pattern, chemotaxonomy, and phylogeny of the fungi. Sydowia 39, 160–201.
    [Google Scholar]
  47. Plemenitaš, A. & Gunde-Cimerman, N. ( 2005; ). Cellular responses in the halophilic black yeast Hortaea werneckii to high environmental salinity. In Adaptation to Life at High Salt Concentrations in Archaea, Bacteria, and Eukarya, pp. 453–470. Edited by N. Gunde-Cimerman, A. Oren & A. Plemenitaš. Dordrecht: Springer.
  48. Prista, C., Almagro, A., Loureiro-Dias, M. C. & Ramos, J. ( 1997; ). Physiological basis for the high salt tolerance of Debaryomyces hansenii. Appl Environ Microbiol 63, 4005–4009.
    [Google Scholar]
  49. Sheffer, M., Fried, A., Gottlieb, H., Tietz, A. & Avron, M. ( 1986; ). Lipid composition of the plasma-membrane of the halotolerant alga Dunaliella salina. Biochim Biophys Acta 857, 165–172.[CrossRef]
    [Google Scholar]
  50. Turk, M., Méjanelle, L., Šentjurc, M., Grimalt, J. O., Gunde-Cimerman, N. & Plemenitaš, A. ( 2004; ). Salt-induced changes in lipid composition and membrane fluidity of halophilic yeast-like melanized fungi. Extremophiles 8, 53–61.[CrossRef]
    [Google Scholar]
  51. Van Eck, J. H., Prior, B. A. & Brandt, E. V. ( 1989; ). Accumulation of polyhydroxy alcohols by Hansenula anomala in response to water stress. J Gen Microbiol 135, 3505–3513.
    [Google Scholar]
  52. Voegele, R. T., Hahn, M., Lohaus, G., Link, T., Heiser, I. & Mendgen, K. ( 2005; ). Possible roles for mannitol and mannitol dehydrogenase in the biotrophic plant pathogen Uromyces fabae. Plant Physiol 137, 190–198.[CrossRef]
    [Google Scholar]
  53. Volkmann, M. & Gorbushina, A. A. ( 2006; ). A broadly applicable method for extraction and characterization of mycosporines and mycosporine-like amino acids of terrestrial, marine and freshwater origin. FEMS Microbiol Lett 255, 286–295.[CrossRef]
    [Google Scholar]
  54. Witteveen, C. F. B. & Visser, J. ( 1995; ). Polyol pools in Aspergillus niger. FEMS Microbiol Lett 134, 57–62.[CrossRef]
    [Google Scholar]
  55. Yancey, P. H. ( 2005; ). Organic osmolytes as compatible, metabolic and counteracting cytoprotectants in high osmolarity and other stresses. J Exp Biol 208, 2819–2830.[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.2007/010751-0
Loading
/content/journal/micro/10.1099/mic.0.2007/010751-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error