1887

Abstract

This study was designed to characterize naphthalene metabolism in CJ2. Comparisons were completed using two archetypal naphthalene-degrading bacteria: NCIB 9816-4 and sp. strain U2, representative of the catechol and gentisate pathways, respectively. Strain CJ2 carries naphthalene catabolic genes that are homologous to those in sp. strain U2. Here we show that strain CJ2 metabolizes naphthalene via gentisate using respirometry, metabolite detection by GC-MS and cell-free enzyme assays. Unlike NCIB 9816-4 or sp. strain U2, strain CJ2 did not grow in minimal medium saturated with naphthalene. Growth assays revealed that strain CJ2 is inhibited by naphthalene concentrations of 78 μM (10 p.p.m.) and higher, and the inhibition of growth is accompanied by the accumulation of orange-coloured, putative naphthalene metabolites in the culture medium. Loss of cell viability coincided with the appearance of the coloured metabolites, and analysis by HPLC suggested that the accumulated metabolites were 1,2-naphthoquinone and its unstable auto-oxidation products. The naphthoquinone breakdown products accumulated in inhibited, but not uninhibited, cultures of strain CJ2. Furthermore, naphthalene itself was shown to directly inhibit growth of a regulatory mutant of strain CJ2 that is unable to metabolize naphthalene. These results suggest that, despite being able to use naphthalene as a carbon and energy source, strain CJ2 must balance naphthalene utilization against two types of toxicity.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.2007/010728-0
2007-11-01
2019-10-20
Loading full text...

Full text loading...

/deliver/fulltext/micro/153/11/3730.html?itemId=/content/journal/micro/10.1099/mic.0.2007/010728-0&mimeType=html&fmt=ahah

References

  1. Ahn, I. S., Ghiorse, W. C., Lion, L. W. & Shuler, M. L. ( 1998; ). Growth kinetics of Pseudomonas putida G7 on naphthalene and occurrence of naphthalene toxicity during nutrient deprivation. Biotechnol Bioeng 59, 587–594.[CrossRef]
    [Google Scholar]
  2. Auger, R. L., Jacobson, A. M. & Domach, M. M. ( 1995; ). Effect of nonionic surfactant addition on bacterial metabolism of naphthalene: assessment of toxicity and overflow metabolism potential. J Hazard Mater 43, 263–272.[CrossRef]
    [Google Scholar]
  3. Cerdan, P., Wasserfallen, A., Rekik, M., Timmis, K. N. & Harayama, S. ( 1994; ). Substrate specificity of catechol 2,3-dioxygenase encoded by TOL plasmid pWWO of Pseudomonas putida and its relationship to cell growth. J Bacteriol 176, 6074–6081.
    [Google Scholar]
  4. Crawford, R. L., Hutton, S. W. & Chapman, P. J. ( 1975; ). Purification and properties of gentisate 1,2-dioxygenase from Moraxella osloensis. J Bacteriol 121, 794–799.
    [Google Scholar]
  5. Davies, J. I. & Evans, W. C. ( 1964; ). Oxidative metabolism of naphthalene by soil pseudomonads. The ring-fission mechanism. Biochem J 91, 251–261.
    [Google Scholar]
  6. Dennis, J. J. & Zylstra, G. J. ( 2004; ). Complete sequence and genetic organization of pDTG1, the 83-kilobase naphthalene degradation plasmid from Pseudomonas putida NCIB 9816–4. J Mol Biol 341, 753–768.[CrossRef]
    [Google Scholar]
  7. Dorn, E. & Knackmuss, H.-J. ( 1978; ). Chemical structure and biodegradability of halogenated aromatic compounds. Biochem J 174, 85–94.
    [Google Scholar]
  8. Fuenmayor, S. L., Wild, M., Boyes, A. L. & Williams, P. A. ( 1998; ). A gene cluster encoding steps in conversion of naphthalene to gentisate in Pseudomonas sp. Strain U2. J Bacteriol 180, 2522–2530.
    [Google Scholar]
  9. Jeon, C. O., Park, W., Padmanabhan, P., DeRito, C., Snape, J. R. & Madsen, E. L. ( 2003; ). Discovery of a bacterium, with distinctive dioxygenase, that is responsible for in situ biodegradation in contaminated sediment. Proc Natl Acad Sci U S A 100, 13591–13596.[CrossRef]
    [Google Scholar]
  10. Jeon, C. O., Park, M., Ro, H. S., Park, W. & Madsen, E. L. ( 2006; ). The naphthalene catabolic (nag) genes of Polaromonas naphthalenivorans CJ2: evolutionary implications for two gene clusters and novel regulatory control. Appl Environ Microbiol 72, 1086–1095.[CrossRef]
    [Google Scholar]
  11. Krooneman, J., Sliekers, A. O., Pedro Gomes, T. M., Forney, L. J. & Gottshal, J. C. ( 2000; ). Characterization of 3-chlorobenzoate degrading aerobic bacteria isolated under various environmental conditions. FEMS Microbiol Ecol 32, 53–59.[CrossRef]
    [Google Scholar]
  12. Lee, H. J., Villaume, J., Cullen, D. C., Kim, B. C. & Gu, M. B. ( 2003; ). Monitoring and classification of PAH toxicity using an immobilized bioluminescent bacteria. Biosens Bioelectron 18, 571–577.[CrossRef]
    [Google Scholar]
  13. Morasch, B., Annweiler, E., Warthmann, R. J. & Meckenstock, R. U. ( 2001; ). The use of a solid adsorber resin for enrichment of bacteria with toxic substrates and to identify metabolites: degradation of naphthalene, o-, and m-xylene by sulfate-reducing bacteria. J Microbiol Methods 44, 183–191.[CrossRef]
    [Google Scholar]
  14. Murphy, J. F. & Stone, R. W. ( 1955; ). The bacterial dissimilation of naphthalene. Can J Microbiol 1, 579–588.[CrossRef]
    [Google Scholar]
  15. Park, W., Jeon, C. O., Cadillo, H., DeRito, C. & Madsen, E. L. ( 2004; ). Survival of naphthalene-degrading Pseudomonas putida NCIB 9816-4 in naphthalene-amended soils: toxicity of naphthalene and its metabolites. Appl Microbiol Biotechnol 64, 429–435.[CrossRef]
    [Google Scholar]
  16. Penning, T. M., Burczynski, M. E., Hung, C. F., McCoull, K. D., Palackal, N. T. & Tsuruda, L. S. ( 1999; ). Dihydrodiol dehydrogenases and polycyclic aromatic hydrocarbon activation: generation of reactive and redox active o-quinones. Chem Res Toxicol 12, 1–18.[CrossRef]
    [Google Scholar]
  17. Peters, C. A., Knightes, C. D. & Brown, D. G. ( 1999; ). Long-term composition dynamics of PAH-containing NAPLs and implications for risk assessment. Environ Sci Technol 33, 4499–4507.[CrossRef]
    [Google Scholar]
  18. Ramos, J. L., Duque, E., Gallegos, M. T., Godoy, P., Ramos-Gonzalez, M. I., Rojas, A., Teran, W. & Segura, A. ( 2002; ). Mechanisms of solvent tolerance in Gram-negative bacteria. Annu Rev Microbiol 56, 743–768.[CrossRef]
    [Google Scholar]
  19. Samanta, S. K., Singh, O. V. & Jain, R. K. ( 2002; ). Polycyclic aromatic hydrocarbons: environmental pollution and bioremediation. Trends Biotechnol 20, 243–248.[CrossRef]
    [Google Scholar]
  20. Schweigert, N., Zehnder, A. J. & Eggen, R. I. ( 2001; ). Chemical properties of catechols and their molecular modes of toxic action in cells, from microorganisms to mammals. Environ Microbiol 3, 81–91.[CrossRef]
    [Google Scholar]
  21. Sikkema, J., de Bont, J. A. & Poolman, B. ( 1994; ). Interactions of cyclic hydrocarbons with biological membranes. J Biol Chem 269, 8022–8028.
    [Google Scholar]
  22. Sikkema, J., de Bont, J. A. & Poolman, B. ( 1995; ). Mechanisms of membrane toxicity of hydrocarbons. Microbiol Rev 59, 201–222.
    [Google Scholar]
  23. Sota, M., Yano, H., Ono, A., Miyazaki, R., Ishii, H., Genka, H., Top, E. M. & Tsuda, M. ( 2006; ). Genomic and functional analysis of the IncP-9 naphthalene-catabolic plasmid NAH7 and its transposon Tn4655 suggests catabolic gene spread by a tyrosine recombinase. J Bacteriol 188, 4057–4067.[CrossRef]
    [Google Scholar]
  24. Stanier, R. Y., Palleroni, N. J. & Doudoroff, M. ( 1966; ). The aerobic pseudomonads: a taxonomic study. J Gen Microbiol 43, 159–271.[CrossRef]
    [Google Scholar]
  25. Xu, Y., Yan, D. Z. & Zhou, N. Y. ( 2006; ). Heterologous expression and localization of gentisate transporter Ncg12922 from Corynebacterium glutamicum ATCC 13032. Biochem Biophys Res Commun 346, 555–561.[CrossRef]
    [Google Scholar]
  26. Xue, W. & Warshawsky, D. ( 2005; ). Metabolic activation of polycyclic and heterocyclic aromatic hydrocarbons and DNA damage: a review. Toxicol Appl Pharmacol 206, 73–93.[CrossRef]
    [Google Scholar]
  27. Yen, K. M. & Gunsalus, I. C. ( 1982; ). Plasmid gene organization: naphthalene/salicylate oxidation. Proc Natl Acad Sci U S A 79, 874–878.[CrossRef]
    [Google Scholar]
  28. Yen, K. M. & Serdar, C. M. ( 1988; ). Genetics of naphthalene catabolism in pseudomonads. Crit Rev Microbiol 15, 247–268.[CrossRef]
    [Google Scholar]
  29. Zhou, N. Y., Al-Dulayymi, J., Baird, M. S. & Williams, P. A. ( 2002; ). Salicylate 5-hydroxylase from Ralstonia sp. strain U2: a monooxygenase with close relationships to and shared electron transport proteins with naphthalene dioxygenase. J Bacteriol 184, 1547–1555.[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.2007/010728-0
Loading
/content/journal/micro/10.1099/mic.0.2007/010728-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error