1887

Abstract

Phagosomal transporters (Phts), required for intracellular growth of , comprise a novel family of multispanning -helical proteins within the major facilitator superfamily (MFS). The members of this family derive exclusively from bacteria. Multiple paralogues are present in a restricted group of - and , but single members were also found in and . Their protein sequences were aligned, yielding a phylogenetic tree showing the relations of the proteins to each other. Topological analyses revealed a probable 12 -helical transmembrane segment (TMS) topology. Motif identification and statistical analyses provided convincing evidence that these proteins arose from a six TMS precursor by intragenic duplication. The phylogenetic tree revealed some potential orthologous relationships, suggestive of common function. However, several probable examples of lateral transfer of the encoding genetic material between bacteria were identified and analysed. The Pht family most closely resembles a smaller MFS family (the UMF9 family) with no functionally characterized members. However, the UMF9 family occurs in a broader range of prokaryotic organism types, including . These two families differ in that organisms bearing members of the Pht family often have numerous paralogues, whereas organisms bearing members of the UMF9 family never have more than two. This work serves to characterize two novel families within the MFS and provides compelling evidence for horizontal transfer of some of the family members.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.2007/010611-0
2008-01-01
2024-03-29
Loading full text...

Full text loading...

/deliver/fulltext/micro/154/1/42.html?itemId=/content/journal/micro/10.1099/mic.0.2007/010611-0&mimeType=html&fmt=ahah

References

  1. Abramson J., Iwata S., Kaback H. R. 2004; Lactose permease as a paradigm for membrane transport proteins. Mol Membr Biol 21:227–236
    [Google Scholar]
  2. Altschul S. F., Madden T. L., Schäffer A. A., Zhang J., Zhang Z., Miller W., Lipman D. J. 1997; Gapped blast and psi-blast: a new generation of protein database search programs. Nucleic Acids Res 25:3389–3402
    [Google Scholar]
  3. Devereux J., Haeberli P., Smithies O. 1984; A comprehensive set of sequence analysis programs for the VAX. Nucleic Acids Res 12:387–395
    [Google Scholar]
  4. Doolittle R. F. 1986 Of URFs and ORFs: A Primer on How to Analyze Derived Amino Acid Sequences Mill Valley, CA: University Science Books;
  5. Fields B. S., Benson R. F., Besser R. E. 2002; Legionella and Legionnaires' disease: 25 years of investigation. Clin Microbiol Rev 15:506–526
    [Google Scholar]
  6. Fliermans C. B., Cherry W. B., Orrison L. H., Smith S. J., Tison D. L., Pope D. H. 1981; Ecological distribution of Legionella pneumophila . Appl Environ Microbiol 41:9–16
    [Google Scholar]
  7. Fonseca M. V., Sauer J.-D., Byrne B. G., Swanson M. 2007; Thymidine salvage in L. pneumophila : a link between metabolism and cellular differentiation. Second American Society for Microbiology Conference on Integrating Metabolism and Genomics (IMAGE2), Montreal, Quebec, Canada, 30 April–3 May 2007
    [Google Scholar]
  8. Gao L. Y., Harb O. S., Kwaik Y. A. 1998; Identification of macrophage-specific infectivity loci ( mil ) of Legionella pneumophila that are not required for infectivity of protozoa. Infect Immun 66:883–892
    [Google Scholar]
  9. George J. R., Pine L., Reeves M. W., Harrell W. K. 1980; Amino acid requirements of Legionella pneumophila . J Clin Microbiol 11:286–291
    [Google Scholar]
  10. Greub G., Raoult D. 2004; Microorganisms resistant to free-living amoebae. Clin Microbiol Rev 17:413–433
    [Google Scholar]
  11. Harb O. S., Abu Kwaik Y. 2000; Characterization of a macrophage-specific infectivity locus ( milA ) of Legionella pneumophila . Infect Immun 68:368–376
    [Google Scholar]
  12. Lemieux M. J., Huang Y., Wang D. N. 2004; The structural basis of substrate translocation by the Escherichia coli glycerol-3-phosphate transporter: a member of the major facilitator superfamily. Curr Opin Struct Biol 14:405–412
    [Google Scholar]
  13. Leung K. Y., Finlay B. B. 1991; Intracellular replication is essential for the virulence of Salmonella typhimurium . Proc Natl Acad Sci U S A 88:11470–11474
    [Google Scholar]
  14. Markowitz V. M., Korzeniewski F., Palaniappan K., Szeto E., Werner G., Padki A., Zhao X., Dubchak I., Hugenholtz P. other authors 2006; The integrated microbial genomes (IMG) system. Nucleic Acids Res 34:D344–D348
    [Google Scholar]
  15. Marston B. J., Lipman H. B., Breiman R. F. 1994; Surveillance for Legionnaires' disease. Risk factors for morbidity and mortality. Arch Intern Med 154:2417–2422
    [Google Scholar]
  16. Molofsky A. B., Swanson M. S. 2004; Differentiate to thrive: lessons from the Legionella pneumophila life cycle. Mol Microbiol 53:29–40
    [Google Scholar]
  17. O'Riordan M., Moors M. A., Portnoy D. A. 2003; Listeria intracellular growth and virulence require host-derived lipoic acid. Science 302:462–464
    [Google Scholar]
  18. Pao S. S., Paulsen I. T., Saier M. H. Jr 1998; The major facilitator superfamily. Microbiol Mol Biol Rev 62:1–32
    [Google Scholar]
  19. Podell S., Gaasterland T. 2007; DarkHorse: a method for genome-wide prediction of horizontal gene transfer. Genome Biol 8:R16
    [Google Scholar]
  20. Ren Q., Paulsen I. T. 2007; Large-scale comparative genomic analyses of cytoplasmic membrane transport systems in prokaryotes. J Mol Microbiol Biotechnol 12:165–179
    [Google Scholar]
  21. Saier M. H. Jr 1994; Computer-aided analyses of transport protein sequences: gleaning evidence concerning function, structure, biogenesis, and evolution. Microbiol Rev 58:71–93
    [Google Scholar]
  22. Saier M. H. Jr 2003; Tracing pathways of transport protein evolution. Mol Microbiol 48:1145–1156
    [Google Scholar]
  23. Saier M. H. Jr, Beatty J. T., Goffeau A., Harley K. T., Heijne W. H. M., Huang S.-C., Jack D. L., Jahn P. S., Lew K. & other authors; 1999; The major facilitator superfamily. J Mol Microbiol Biotechnol 1:257–279
    [Google Scholar]
  24. Saitou N., Nei M. 1987; The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425
    [Google Scholar]
  25. Sauer J. D., Shannon J. G., Howe D., Hayes S. F., Swanson M. S., Heinzen R. A. 2005a; Specificity of Legionella pneumophila and Coxiella burnetii vacuoles and versatility of Legionella pneumophila revealed by coinfection. Infect Immun 73:4494–4504
    [Google Scholar]
  26. Sauer J. D., Bachman M. A., Swanson M. S. 2005b; The phagosomal transporter A couples threonine acquisition to differentiation and replication of Legionella pneumophila in macrophages. Proc Natl Acad Sci U S A 102:9924–9929
    [Google Scholar]
  27. Tamura N., Konishi S., Yamaguchi A. 2003; Mechanisms of drug/H+ antiport: complete cysteine-scanning mutagenesis and the protein engineering approach. Curr Opin Chem Biol 7:570–579
    [Google Scholar]
  28. Tesh M. J., Miller R. D. 1981; Amino acid requirements for Legionella pneumophila growth. J Clin Microbiol 13:865–869
    [Google Scholar]
  29. Tesh M. J., Morse S. A., Miller R. D. 1983; Intermediary metabolism in Legionella pneumophila : utilization of amino acids and other compounds as energy sources. J Bacteriol 154:1104–1109
    [Google Scholar]
  30. Thompson J. D., Gibson T. J., Plewniak F., Jeanmougin F., Higgins D. G. 1997; The clustal_x windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 25:4876–4882
    [Google Scholar]
  31. van Veen H. W. 2001; Towards the molecular mechanism of prokaryotic and eukaryotic multidrug transporters. Semin Cell Dev Biol 12:239–245
    [Google Scholar]
  32. Warren W. J., Miller R. D. 1979; Growth of Legionnaires' disease bacterium ( Legionella pneumophila ) in chemically defined medium. J Clin Microbiol 10:50–55
    [Google Scholar]
  33. Wieland H., Ullrich S., Lang F., Neumeister B. 2005; Intracellular multiplication of Legionella pneumophila depends on host cell amino acid transporter SLC1A5. Mol Microbiol 55:1528–1537
    [Google Scholar]
  34. Zhai Y., Saier M. H. Jr 2001; A web-based program for the prediction of average hydropathy, average amphipathicity and average similarity of multiply aligned homologous proteins. J Mol Microbiol Biotechnol 3:285–286
    [Google Scholar]
  35. Zhai Y., Saier M. H. Jr 2002; A simple sensitive program for detecting internal repeats in sets of multiply aligned homologous proteins. J Mol Microbiol Biotechnol 4:375–377
    [Google Scholar]
  36. Zhai Y., Tchieu J., Saier M. H. Jr 2002; A web-based TreeView (TV) program for the visualization of phylogenetic trees. J Mol Microbiol Biotechnol 4:69–70
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.2007/010611-0
Loading
/content/journal/micro/10.1099/mic.0.2007/010611-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error