1887

Abstract

The chemolithoautotroph has two genes predicted to encode outer-membrane (OM) ferrioxamine transporters. Expression of the ferrioxamine uptake system required induction, as shown by the shorter lag phase in ferrioxamine-containing cultures when ferrioxamine-exposed cells were used as an inoculum. The two OM ferrioxamine siderophore transporters encoded by (NE1097) and (NE1088) were produced only in cells grown in Fe-limited ferrioxamine-containing medium. The inactivation of , singly or in combination with , prevented growth in Fe-limited medium containing excess desferrioxamine (DFX). The -disrupted single mutant grew poorly in the regular Fe-limited (0.2 μM) medium with 10 μM DFX, but grew well when the Fe level was raised to 1.0 μM with 10 μM DFX. For efficient acquisition of Fe-loaded ferrioxamine, needs both ferrioxamine transporters FoxA and FoxA. FoxA probably regulates its own production, and it controls the production of FoxA as well.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.2007/010603-0
2007-12-01
2024-04-18
Loading full text...

Full text loading...

/deliver/fulltext/micro/153/12/3963.html?itemId=/content/journal/micro/10.1099/mic.0.2007/010603-0&mimeType=html&fmt=ahah

References

  1. Baumler A. J., Hantke K. 1992; Ferrioxamine uptake in Yersinia enterocolitica : characterization of the receptor protein FoxA. Mol Microbiol 6:1309–1321
    [Google Scholar]
  2. Bell K. S., Sebaihia M., Pritchard L., Holden M. T., Hyman L. J., Holeva M. C., Thomson N. R., Bentley S. D., Churcher L. J. other authors 2004; Genome sequence of the enterobacterial phytopathogen Erwinia carotovora subsp. atroseptica and characterization of virulence factors. Proc Natl Acad Sci U S A 101:11105–11110
    [Google Scholar]
  3. Berner I., Winkelmann G. 1990; Ferrioxamine transport mutants and the identification of the ferrioxamine receptor protein (FoxA) in Erwinia herbicola ( Enterobacter agglomerans . Biol Met 2:197–202
    [Google Scholar]
  4. Berner I., Konetschny-Rapp S., Jung G., Winkelmann G. 1988; Characterization of ferrioxamine E as the principal siderophore of Erwinia herbicola ( Enterobacter agglomerans . Biol Met 1:51–56
    [Google Scholar]
  5. Berry E. A., Trumpower B. L. 1987; Simultaneous determination of hemes a, b, and c from pyridine hemochrome spectra. Anal Biochem 161:1–15
    [Google Scholar]
  6. Braun V. 1997; Surface signaling: novel transcription initiation mechanism starting from the cell surface. Arch Microbiol 167:325–331
    [Google Scholar]
  7. Braun V., Killmann H. 1999; Bacterial solutions to the iron-supply problem. Trends Biochem Sci 24:104–109
    [Google Scholar]
  8. Braun V., Mahren S., Ogierman M. 2003; Regulation of the FecI-type ECF sigma factor by transmembrane signalling. Curr Opin Microbiol 6:173–180
    [Google Scholar]
  9. Carter P. 1971; Spectrophotometric determination of serum iron at the submicrogram level with a new reagent (ferrozine. Anal Biochem 40:450–458
    [Google Scholar]
  10. Chain P., Lamerdin J., Larimer F., Regala W., Lao V., Land M., Hauser L., Hooper A., Klotz M. other authors 2003; Complete genome sequence of the ammonia-oxidizing bacterium and obligate chemolithoautotroph Nitrosomonas europaea . J Bacteriol 185:2759–2773
    [Google Scholar]
  11. Champomier-Verges M. C., Stintzi A., Meyer J. M. 1996; Acquisition of iron by the non-siderophore-producing Pseudomonas fragi . Microbiology 142:1191–1199
    [Google Scholar]
  12. Chiu C. H., Tang P., Chu C., Hu S., Bao Q., Yu J., Chou Y. Y., Wang H. S., Lee Y. S. 2005; The genome sequence of Salmonella enterica serovar Choleraesuis, a highly invasive and resistant zoonotic pathogen. Nucleic Acids Res 33:1690–1698
    [Google Scholar]
  13. Clarke T. E., Tari L. W., Vogel H. J. 2001; Structural biology of bacterial iron uptake systems. Curr Top Med Chem 1:7–30
    [Google Scholar]
  14. Deiss K., Hantke K., Winkelmann G. 1998; Molecular recognition of siderophores: a study with cloned ferrioxamine receptors (FoxA) from Erwinia herbicola and Yersinia enterocolitica . Biometals 11:131–137
    [Google Scholar]
  15. Ensign S. A., Hyman M. R., Arp D. J. 1993; In vitro activation of ammonia monooxygenase from Nitrosomonas europaea by copper. J Bacteriol 175:1971–1980
    [Google Scholar]
  16. Escolar L., Perez-Martin J., de Lorenzo V. 1999; Opening the iron box: transcriptional metalloregulation by the Fur protein. J Bacteriol 181:6223–6229
    [Google Scholar]
  17. Faraldo-Gomez J. D., Sansom M. S. 2003; Acquisition of siderophores in gram-negative bacteria. Nat Rev Mol Cell Biol 4:105–116
    [Google Scholar]
  18. Gaspar M., Santos M. A., Krauter K., Winkelmann G. 1999; Molecular recognition of synthetic siderophore analogues: a study with receptor-deficient and fhu(A-B) deletion mutants of Escherichia coli . Biometals 12:209–218
    [Google Scholar]
  19. Gunter K., Toupet C., Schupp T. 1993; Characterization of an iron-regulated promoter involved in desferrioxamine B synthesis in Streptomyces pilosus : repressor-binding site and homology to the diphtheria toxin gene promoter. J Bacteriol 175:3295–3302
    [Google Scholar]
  20. Hageman R. H., Hucklesby D. P. 1971; Nitrate reductase in higher plants. Methods Enzymol 23:491–503
    [Google Scholar]
  21. Hoegy F., Celia H., Mislin G. L., Vincent M., Gallay J., Schalk I. J. 2005; Binding of iron-free siderophore, a common feature of siderophore outer membrane transporters of Escherichia coli and Pseudomonas aeruginosa . J Biol Chem 280:20222–20230
    [Google Scholar]
  22. Hommes N. G., Sayavedra-Soto L. A., Arp D. J. 1996; Mutagenesis of hydroxylamine oxidoreductase in Nitrosomonas europaea by transformation and recombination. J Bacteriol 178:3710–3714
    [Google Scholar]
  23. Hooper A. B., Erickson R. H., Terry K. R. 1972; Electron transport systems of Nitrosomonas : isolation of a membrane-envelope fraction. J Bacteriol 110:430–438
    [Google Scholar]
  24. Houk R. S. 1994; Elemental and isotopic analysis by inductively coupled plasma mass spectrometry. Acc Chem Res 27:333–339
    [Google Scholar]
  25. Hyman M. R., Arp D. J. 1993; An electrophoretic study of the thermal-dependent and reductant-dependent aggregation of the 27 kDa component of ammonia monooxygenase from Nitrosomonas europaea . Electrophoresis 14:619–627
    [Google Scholar]
  26. Killmann H., Braun V. 1998; Conversion of the coprogen transport protein FhuE and the ferrioxamine B transport protein FoxA into ferrichrome transport proteins. FEMS Microbiol Lett 161:59–67
    [Google Scholar]
  27. Kim I., Stiefel A., Plantor S., Angerer A., Braun V. 1997; Transcription induction of the ferric citrate transport genes via the N-terminus of the FecA outer membrane protein, the Ton system and the electrochemical potential of the cytoplasmic membrane. Mol Microbiol 23:333–344
    [Google Scholar]
  28. Kingsley R. A., Reissbrodt R., Rabsch W., Ketley J. M., Tsolis R. M., Everest P., Dougan G., Bäumler A. J., Roberts M., Williams P. H. 1999; Ferrioxamine-mediated iron(III) utilization by Salmonella enterica . Appl Environ Microbiol 65:1610–1618
    [Google Scholar]
  29. Kovach M. E., Elzer P. H., Hill D. S., Robertson G. T., Farris M. A., Roop R. M. II, Peterson K. M. 1995; Four new derivatives of the broad-host-range cloning vector pBBR1MCS, carrying different antibiotic-resistance cassettes. Gene 166:175–176
    [Google Scholar]
  30. Livak K. J., Schmittgen T. D. 2001; Analysis of relative gene expression data using real-time quantitative PCR and the method. Methods 25:402–408
    [Google Scholar]
  31. Llamas M. A., Sparrius M., Kloet R., Jimenez C. R., Vandenbroucke-Grauls C., Bitter W. 2006; The heterologous siderophores ferrioxamine B and ferrichrome activate signaling pathways in Pseudomonas aeruginosa . J Bacteriol 188:1882–1891
    [Google Scholar]
  32. Mahren S., Braun V. 2003; The FecI extracytoplasmic-function sigma factor of Escherichia coli interacts with the β ′ subunit of RNA polymerase. J Bacteriol 185:1796–1802
    [Google Scholar]
  33. Mahren S., Schnell H., Braun V. 2005; Occurrence and regulation of the ferric citrate transport system in Escherichia coli B, Klebsiella pneumoniae, Enterobacter aerogenes , and Photorhabdus luminescens . Arch Microbiol 184:175–186
    [Google Scholar]
  34. Meyer J.-M. 1992; Exogenous siderophore-mediated iron uptake in Pseudomonas aeruginosa : possible involvement of porin OprF in iron translocation. J Gen Microbiol 138:951–958
    [Google Scholar]
  35. Meyer J.-M., Abdallah M. A. 1980; The siderochromes of non-fluorescent pseudomonads: production of nocardamine by Pseudomonas stutzeri . J Gen Microbiol 118:125–129
    [Google Scholar]
  36. Muller G., Raymond K. N. 1984; Specificity and mechanism of ferrioxamine-mediated iron transport in Streptomyces pilosus . J Bacteriol 160:304–312
    [Google Scholar]
  37. Neilands J. B. 1995; Siderophores: structure and function of microbial iron transport compounds. J Biol Chem 270:26723–26726
    [Google Scholar]
  38. Pfaffl M. W. 2001; A new mathematical model for relative quantification in real-time RT-PCR. Nucleic Acids Res 29:e45
    [Google Scholar]
  39. Sambrook J., Fritsch E. F., Maniatis T. 1989 Molecular Cloning: a Laboratory Manual , 2nd edn. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
  40. Schalk I. J., Hennard C., Dugave C., Poole K., Abdallah M. A., Pattus F. 2001; Iron-free pyoverdin binds to its outer membrane receptor FpvA in Pseudomonas aeruginosa : a new mechanism for membrane iron transport. Mol Microbiol 39:351–360
    [Google Scholar]
  41. Schalk I. J., Yue W. W., Buchanan S. K. 2004; Recognition of iron-free siderophores by TonB-dependent iron transporters. Mol Microbiol 54:14–22
    [Google Scholar]
  42. Schweizer H. D. 1993; Small broad-host-range gentamicin resistance gene cassettes for site-specific insertion and deletion mutagenesis. Biotechniques 15:831–834
    [Google Scholar]
  43. Stein L. Y., Arp D. J. 1998; Loss of ammonia monooxygenase activity in Nitrosomonas europaea upon exposure to nitrite. Appl Environ Microbiol 64:4098–4102
    [Google Scholar]
  44. Stintzi A., Barnes C., Xu J., Raymond K. N. 2000; Microbial iron transport via a siderophore shuttle: a membrane ion transport paradigm. Proc Natl Acad Sci U S A 97:10691–10696
    [Google Scholar]
  45. Visca P., Leoni L., Wilson M. J., Lamont I. L. 2002; Iron transport and regulation, cell signalling and genomics: lessons from Escherichia coli and Pseudomonas . Mol Microbiol 45:1177–1190
    [Google Scholar]
  46. Wei X., Sayavedra-Soto L. A., Arp D. J. 2004; The transcription of the cbb operon in Nitrosomonas europaea . Microbiology 150:1869–1879
    [Google Scholar]
  47. Wei X., Vajrala N., Hauser L., Sayavedra-Soto L. A., Arp D. J. 2006; Iron nutrition and physiological responses to iron stress in Nitrosomonas europaea . Arch Microbiol 186:107–118
    [Google Scholar]
  48. Winkelmann G. 1991; Specificity of iron transport in bacteria and fungi. In CRC Handbook of Microbial Iron Chelates pp 366 Edited by Winkelmann G. Boca Raton, FL: CRC Press;
    [Google Scholar]
  49. Yue W. W., Grizot S., Buchanan S. K. 2003; Structural evidence for iron-free citrate and ferric citrate binding to the TonB-dependent outer membrane transporter FecA. J Mol Biol 332:353–368
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.2007/010603-0
Loading
/content/journal/micro/10.1099/mic.0.2007/010603-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error