1887

Abstract

There are relatively few classes of antifungal drugs. This restricts clinicians' therapeutic choices and these choices are further reduced by the emergence of drug resistance. Exposure to antifungal drugs represents an environmental stress for the fungal pathogen . The immediate response of to antifungals may be drug tolerance, which can lead to drug resistance. This article examines drug resistance from the perspective of it being a stress response and investigates how commonality with other stress-response pathways gives insights into the prospects for overcoming, or preventing, drug resistance.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.2007/010405-0
2007-10-01
2020-04-10
Loading full text...

Full text loading...

/deliver/fulltext/micro/153/10/3211.html?itemId=/content/journal/micro/10.1099/mic.0.2007/010405-0&mimeType=html&fmt=ahah

References

  1. Akins R. A.. 2005; An update on antifungal targets and mechanisms of resistance in Candida albicans . Med Mycol43:285–318
    [Google Scholar]
  2. Alarco A. M., Raymond M.. 1999; The bZip transcription factor Cap1p is involved in multidrug resistance and oxidative stress response in Candida albicans . J Bacteriol181:700–708
    [Google Scholar]
  3. Albertson G. D., Niimi M., Cannon R. D., Jenkinson H. F.. 1996; Multiple efflux mechanisms are involved in Candida albicans fluconazole resistance. Antimicrob Agents Chemother40:2835–2841
    [Google Scholar]
  4. Anderson J. B.. 2005; Evolution of antifungal-drug resistance: mechanisms and pathogen fitness. Nat Rev Microbiol3:547–556
    [Google Scholar]
  5. Bader T., Schroppel K., Bentink S., Agabian N., Kohler G., Morschhauser J.. 2006; Role of calcineurin in stress resistance, morphogenesis, and virulence of a Candida albicans wild-type strain. Infect Immun74:4366–4369
    [Google Scholar]
  6. Baixench M. T., Aoun N., Desnos-Ollivier M., Garcia-Hermoso D., Bretagne S., Ramires S., Piketty C., Dannaoui E.. 2007; Acquired resistance to echinocandins in Candida albicans : case report and review. J Antimicrob Chemother59:1076–1083
    [Google Scholar]
  7. Blankenship J. R., Heitman J.. 2005; Calcineurin is required for Candida albicans to survive calcium stress in serum. Infect Immun73:5767–5774
    [Google Scholar]
  8. Bruno V. M., Mitchell A. P.. 2005; Regulation of azole drug susceptibility by Candida albicans protein kinase CK2. Mol Microbiol56:559–573
    [Google Scholar]
  9. Cannon R. D., Chaffin W. L.. 1999; Oral colonization by Candida albicans . Crit Rev Oral Biol Med10:359–383
    [Google Scholar]
  10. Chait R., Craney A., Kishony R.. 2007; Antibiotic interactions that select against resistance. Nature446:668–671
    [Google Scholar]
  11. Coste A., Turner V., Ischer F., Morschhauser J., Forche A., Selmecki A., Berman J., Bille J., Sanglard D.. 2006; A mutation in Tac1p, a transcription factor regulating CDR1 and CDR2 , is coupled with loss of heterozygosity at chromosome 5 to mediate antifungal resistance in Candida albicans . Genetics172:2139–2156
    [Google Scholar]
  12. Cowen L. E., Lindquist S.. 2005; Hsp90 potentiates the rapid evolution of new traits: drug resistance in diverse fungi. Science309:2185–2189
    [Google Scholar]
  13. Cowen L. E., Sanglard D., Calabrese D., Sirjusingh C., Anderson J. B., Kohn L. M.. 2000; Evolution of drug resistance in experimental populations of Candida albicans . J Bacteriol182:1515–1522
    [Google Scholar]
  14. Cowen L. E., Carpenter A. E., Matangkasombut O., Fink G. R., Lindquist S.. 2006; Genetic architecture of Hsp90-dependent drug resistance. Eukaryot Cell5:2184–2188
    [Google Scholar]
  15. Cruz M. C., Goldstein A. L., Blankenship J. R., Del Poeta M., Davis D., Cardenas M. E., Perfect J. R., McCusker J. H., Heitman J.. 2002; Calcineurin is essential for survival during membrane stress in Candida albicans . EMBO J21:546–559
    [Google Scholar]
  16. Enjalbert B., Smith D. A., Cornell M. J., Alam I., Nicholls S., Brown A. J., Quinn J.. 2006; Role of the Hog1 stress-activated protein kinase in the global transcriptional response to stress in the fungal pathogen Candida albicans . Mol Biol Cell17:1018–1032
    [Google Scholar]
  17. Fox D. S., Heitman J.. 2002; Good fungi gone bad: the corruption of calcineurin. Bioessays24:894–903
    [Google Scholar]
  18. Gregori C., Schuller C., Roetzer A., Schwarzmuller T., Ammerer G., Kuchler K.. 2007; The high osmolarity glycerol (HOG) response pathway in the human fungal pathogen Candida glabrata strain ATCC2001 lacks a signaling branch operating in baker's yeast. Eukaryot Cell in press
  19. Holmes A. R., Tsao S., Ong S. W., Lamping E., Niimi K., Monk B. C., Niimi M., Kaneko A., Holland B. R.. other authors 2006; Heterozygosity and functional allelic variation in the Candida albicans efflux pump genes CDR1 and CDR2 . Mol Microbiol62:170–186
    [Google Scholar]
  20. Jain P., Akula I., Edlind T.. 2003; Cyclic AMP signaling pathway modulates susceptibility of Candida species and Saccharomyces cerevisiae to antifungal azoles and other sterol biosynthesis inhibitors. Antimicrob Agents Chemother47:3195–3201
    [Google Scholar]
  21. Karababa M., Valentino E., Pardini G., Coste A. T., Bille J., Sanglard D.. 2006; CRZ1 , a target of the calcineurin pathway in Candida albicans . Mol Microbiol59:1429–1451
    [Google Scholar]
  22. Lamping E., Monk B. C., Niimi K., Holmes A. R., Tsao S., Tanabe K., Niimi M., Uehara Y., Cannon R. D.. 2007; Characterization of three classes of membrane proteins involved in fungal azole resistance by functional hyper-expression in Saccharomyces cerevisiae . Eukaryot Cell6:1150–1165
    [Google Scholar]
  23. Liu T. T., Lee R. E., Barker K. S., Lee R. E., Wei L., Homayouni R., Rogers P. D.. 2005; Genome-wide expression profiling of the response to azole, polyene, echinocandin, and pyrimidine antifungal agents in Candida albicans . Antimicrob Agents Chemother49:2226–2236
    [Google Scholar]
  24. Monge R. A., Roman E., Nombela C., Pla J.. 2006; The MAP kinase signal transduction network in Candida albicans . Microbiology152:905–912
    [Google Scholar]
  25. Monk B. C., Cannon R. D., Nakamura K., Niimi M., Niimi K., Harding D. R. K., Holmes A. R., Lamping E., Goffeau A., Decottignies A.. 2002; Membrane protein expression system and its application. International Patent PCT/NZ02/00163
  26. Nakamura K., Niimi M., Niimi K., Holmes A. R., Yates J. E., Decottignies A., Monk B. C., Goffeau A., Cannon R. D.. 2001; Functional expression of Candida albicans drug efflux pump Cdr1p in a Saccharomyces cerevisiae strain deficient in membrane transporters. Antimicrob Agents Chemother45:3366–3374
    [Google Scholar]
  27. Navarro-Garcia F., Alonso-Monge R., Rico H., Pla J., Sentandreu R., Nombela C.. 1998; A role for the MAP kinase gene MKC1 in cell wall construction and morphological transitions in Candida albicans . Microbiology144:411–424
    [Google Scholar]
  28. Niimi K., Harding D. R., Parshot R., King A., Lun D. J., Decottignies A., Niimi M., Lin S., Cannon R. D.. other authors 2004; Chemosensitization of fluconazole resistance in Saccharomyces cerevisiae and pathogenic fungi by a d-octapeptide derivative. Antimicrob Agents Chemother48:1256–1271
    [Google Scholar]
  29. Niimi M., Wada S., Tanabe K., Kaneko A., Takano Y., Umeyama T., Hanaoka N., Uehara Y., Lamping E.. other authors 2005; Functional analysis of fungal drug efflux transporters by heterologous expression in Saccharomyces cerevisiae . Jpn J Infect Dis58:1–7
    [Google Scholar]
  30. Niimi K., Maki K., Ikeda F., Holmes A. R., Lamping E., Niimi M., Monk B. C., Cannon R. D.. 2006; Overexpression of Candida albicans CDR1, CDR2 , or MDR1 does not produce significant changes in echinocandin susceptibility. Antimicrob Agents Chemother50:1148–1155
    [Google Scholar]
  31. Onyewu C., Wormley F. L. Jr, Perfect J. R., Heitman J.. 2004; The calcineurin target, Crz1, functions in azole tolerance but is not required for virulence of Candida albicans . Infect Immun72:7330–7333
    [Google Scholar]
  32. Perea S., Lopez-Ribot J. L., Kirkpatrick W. R., McAtee R. K., Santillan R. A., Martinez M., Calabrese D., Sanglard D., Patterson T. F.. 2001; Prevalence of molecular mechanisms of resistance to azole antifungal agents in Candida albicans strains displaying high-level fluconazole resistance isolated from human immunodeficiency virus-infected patients. Antimicrob Agents Chemother45:2676–2684
    [Google Scholar]
  33. Perepnikhatka V., Fischer F. J., Niimi M., Baker R. A., Cannon R. D., Wang Y. K., Sherman F., Rustchenko E.. 1999; Specific chromosome alterations in fluconazole-resistant mutants of Candida albicans . J Bacteriol181:4041–4049
    [Google Scholar]
  34. Quinn J., Brown A. J. P.. 2007; Stress responses in Candida albicans . In Candida: Comparative and Functional Genomics pp217–261 Edited by d'Enfert C, Hube B.. Norwich, UK: Caister Adademic Press;
  35. Riggle P. J., Kumamoto C. A.. 2006; Transcriptional regulation of MDR1 , encoding a drug efflux determinant, in fluconazole-resistant Candida albicans strains through an Mcm1p binding site. Eukaryot Cell5:1957–1968
    [Google Scholar]
  36. Roman E., Arana D. M., Nombela C., Alonso-Monge R., Pla J.. 2007; MAP kinase pathways as regulators of fungal virulence. Trends Microbiol15:181–190
    [Google Scholar]
  37. Sanglard D., Bille J.. 2002; Current understanding of the modes of action of and resistance mechanisms to conventional and emerging antifungal agents for treatment of Candida infections. In Candida and Candidiasis pp349–383 Edited by Calderone R. A. Washington, DC: American Society for Microbiology;
  38. Sanglard D., Ischer F., Marchetti O., Entenza J., Bille J.. 2003; Calcineurin A of Candida albicans : involvement in antifungal tolerance, cell morphogenesis and virulence. Mol Microbiol48:959–976
    [Google Scholar]
  39. Schuetzer-Muehlbauer M., Willinger B., Egner R., Ecker G., Kuchler K.. 2003; Reversal of antifungal resistance mediated by ABC efflux pumps from Candida albicans functionally expressed in yeast. Int J Antimicrob Agents22:291–300
    [Google Scholar]
  40. Selmecki A., Forche A., Berman J.. 2006; Aneuploidy and isochromosome formation in drug-resistant Candida albicans . Science313:367–370
    [Google Scholar]
  41. Silver P. M., Oliver B. G., White T. C.. 2004; Role of Candida albicans transcription factor Upc2p in drug resistance and sterol metabolism. Eukaryot Cell3:1391–1397
    [Google Scholar]
  42. Steinbach W. J., Reedy J. L., Cramer R. A. Jr, Perfect J. R., Heitman J.. 2007; Harnessing calcineurin as a novel anti-infective agent against invasive fungal infections. Nat Rev Microbiol5:418–430
    [Google Scholar]
  43. White T. C.. 1997; Increased mRNA levels of ERG16, CDR , and MDR1 correlate with increases in azole resistance in Candida albicans isolates from a patient infected with human immunodeficiency virus. Antimicrob Agents Chemother41:1482–1487
    [Google Scholar]
  44. White T. C., Marr K. A., Bowden R. A.. 1998; Clinical, cellular, and molecular factors that contribute to antifungal drug resistance. Clin Microbiol Rev11:382–402
    [Google Scholar]
  45. Wright G. D.. 2007; The antibiotic resistome: the nexus of chemical and genetic diversity. Nat Rev Microbiol5:175–186
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.2007/010405-0
Loading
/content/journal/micro/10.1099/mic.0.2007/010405-0
Loading

Data & Media loading...

Most cited this month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error