1887

Abstract

2a 2457T produces lipopolysaccharide (LPS) with two O-antigen (OAg) chain lengths: a short (S-OAg) controlled by WzzB and a very long (VL-OAg) determined by Wzz. This study demonstrates that the synthesis and length distribution of the OAg are under growth-phase-dependent regulation. Quantitative electrophoretic analysis showed that the VL-OAg increased during growth while the S-OAg distribution remained constant. Increased production of VL-OAg correlated with the growth-phase-regulated expression of the transcription elongation factor RfaH, and was severely impaired in a Δ mutant, which synthesized only low-molecular-mass OAg molecules and a small amount of S-OAg. Real-time RT-PCR revealed a drastic reduction of polymerase gene expression in the Δ mutant. Complementation of this mutant with the gene cloned into a high-copy-number plasmid restored the bimodal OAg distribution, suggesting that cellular levels of Wzy influence not only OAg polymerization but also chain-length distribution. Accordingly, overexpression of in the wild-type strain resulted in production of a large amount of high-molecular-mass OAg molecules. An increased dosage of either or also altered OAg chain-length distribution. Transcription of and genes was regulated during bacterial growth but in an RfaH-independent manner. Overall, these findings indicate that expression of the , and genes is finely regulated to determine an appropriate balance between the proteins responsible for polymerization and chain-length distribution of OAg.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.2007/010066-0
2007-10-01
2019-10-20
Loading full text...

Full text loading...

/deliver/fulltext/micro/153/10/3499.html?itemId=/content/journal/micro/10.1099/mic.0.2007/010066-0&mimeType=html&fmt=ahah

References

  1. Artsimovitch, I. & Landick, R. ( 2002; ). The transcriptional regulator RfaH stimulates RNA chain synthesis after recruitment to elongation complexes by the exposed nontemplate DNA strand. Cell 109, 193–203.[CrossRef]
    [Google Scholar]
  2. Bailey, M. J., Hughes, C. & Koronakis, V. ( 1997; ). RfaH and the ops element, components of a novel system controlling bacterial transcription elongation. Mol Microbiol 26, 845–851.[CrossRef]
    [Google Scholar]
  3. Bengoechea, J. A., Zhang, L., Toivanen, P. & Skurnik, M. ( 2002; ). Regulatory network of lipopolysaccharide O-antigen biosynthesis in Yersinia enterocolitica includes cell envelope-dependent signals. Mol Microbiol 44, 1045–1062.[CrossRef]
    [Google Scholar]
  4. Bittner, M., Saldias, S., Estevez, C., Zaldivar, M., Marolda, C. L., Valvano, M. A. & Contreras, I. ( 2002; ). O-antigen expression in Salmonella enterica serovar Typhi is regulated by nitrogen availability through RpoN-mediated transcriptional control of the rfaH gene. Microbiology 148, 3789–3799.
    [Google Scholar]
  5. Cherepanov, P. P. & Wackernagel, W. ( 1995; ). Gene disruption in Escherichia coli: TcR and KmR cassettes with the option of Flp-catalyzed excision of the antibiotic-resistance determinant. Gene 158, 9–14.[CrossRef]
    [Google Scholar]
  6. Daniels, C., Vindurampulle, C. & Morona, R. ( 1998; ). Overexpression and topology of the Shigella flexneri O-antigen polymerase (Rfc/Wzy). Mol Microbiol 28, 1211–1222.[CrossRef]
    [Google Scholar]
  7. Datsenko, K. A. & Wanner, B. L. ( 2000; ). One-step inactivation of chromosomal genes in Escherichia coli K-12 using PCR products. Proc Natl Acad Sci U S A 97, 6640–6645.[CrossRef]
    [Google Scholar]
  8. Delgado, M. A., Mouslim, C. & Groisman, E. A. ( 2006; ). The PmrA/PmrB and RcsC/YojN/RcsB systems control expression of the Salmonella O-antigen chain length determinant. Mol Microbiol 60, 39–50.[CrossRef]
    [Google Scholar]
  9. Dorman, C. J. & Porter, M. E. ( 1998; ). The Shigella virulence gene regulatory cascade: a paradigm of bacterial gene control mechanisms. Mol Microbiol 29, 677–684.[CrossRef]
    [Google Scholar]
  10. Hong, M. & Payne, S. M. ( 1997; ). Effect of mutations in Shigella flexneri chromosomal and plasmid-encoded lipopolysaccharide genes on invasion and serum resistance. Mol Microbiol 24, 779–791.[CrossRef]
    [Google Scholar]
  11. Jennison, A. V. & Verma, N. K. ( 2004; ). Shigella flexneri infection: pathogenesis and vaccine development. FEMS Microbiol Rev 28, 43–58.[CrossRef]
    [Google Scholar]
  12. Kohler, H., Rodrigues, S. P. & McCormick, B. A. ( 2002; ). Shigella flexneri interactions with the basolateral membrane domain of polarized model intestinal epithelium: role of lipopolysaccharide in cell invasion and in activation of the mitogen-activated protein kinase ERK. Infect Immun 70, 1150–1158.[CrossRef]
    [Google Scholar]
  13. Koop, A. H., Hartley, M. E. & Bourgeois, S. ( 1987; ). A low-copy-number vector utilizing beta-galactosidase for the analysis of gene control elements. Gene 52, 245–256.[CrossRef]
    [Google Scholar]
  14. Lesse, A. J., Campagnari, A. A., Bittner, W. E. & Apicella, M. A. ( 1990; ). Increased resolution of lipopolysaccharides and lipooligosaccharides utilizing tricine-sodium dodecyl sulfate-polyacrylamide gel electrophoresis. J Immunol Methods 126, 109–117.[CrossRef]
    [Google Scholar]
  15. Marolda, C. L., Lahiry, P., Vines, E., Saldias, S. & Valvano, M. A. ( 2006; ). Micromethods for the characterization of lipid A-core and O-antigen lipopolysaccharide. Methods Mol Biol 347, 237–252.
    [Google Scholar]
  16. Miller, J. H. ( 1972; ). Experiments in Molecular Genetics. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory.
  17. Morona, R., Mavris, M., Falarino, A. & Manning, P. A. ( 1994; ). Characterization of the rfc region of Shigella flexneri. J Bacteriol 176, 733–747.
    [Google Scholar]
  18. Morona, R., Van Den Bosch, L. & Manning, P. A. ( 1995; ). Molecular, genetic, and topological characterization of O-antigen chain length regulation in Shigella flexneri. J Bacteriol 177, 1059–1068.
    [Google Scholar]
  19. Morona, R., Daniels, C. & Van Den Bosch, L. ( 2003; ). Genetic modulation of Shigella flexneri 2a lipopolysaccharide O antigen modal chain length reveals that it has been optimized for virulence. Microbiology 149, 925–939.[CrossRef]
    [Google Scholar]
  20. Murray, G. L., Attridge, S. R. & Morona, R. ( 2003; ). Regulation of Salmonella Typhimurium lipopolysaccharide O antigen chain length is required for virulence; identification of FepE as a second Wzz. Mol Microbiol 47, 1395–1406.[CrossRef]
    [Google Scholar]
  21. Nagy, G., Danino, V., Dobrindt, U., Pallen, M., Chaudhuri, R., Emody, L., Hinton, J. C. & Hacker, J. ( 2006; ). Down-regulation of key virulence factors makes the Salmonella enterica serovar Typhimurium rfaH mutant a promising live-attenuated vaccine candidate. Infect Immun 74, 5914–5925.[CrossRef]
    [Google Scholar]
  22. Okada, N., Sasakawa, C., Tobe, T., Yamada, M., Nagai, S., Talukder, K. A., Komatsu, K., Kanegasaki, S. & Yoshikawa, M. ( 1991; ). Virulence-associated chromosomal loci of Shigella flexneri identified by random Tn5 insertion mutagenesis. Mol Microbiol 5, 187–195.[CrossRef]
    [Google Scholar]
  23. Pradel, E. & Schnaitman, C. A. ( 1991; ). Effect of rfaH (sfrB) and temperature on expression of rfa genes of Escherichia coli K-12. J Bacteriol 173, 6428–6431.
    [Google Scholar]
  24. Raetz, C. R. & Whitfield, C. ( 2002; ). Lipopolysaccharide endotoxins. Annu Rev Biochem 71, 635–700.[CrossRef]
    [Google Scholar]
  25. Robbins-Manke, J. L., Zdarveski, Z. Z., Marinus, M. & Essigmann, J. M. ( 2005; ). Analysis of global gene expression and double strand-break formation in DNA adenine methyltransferase and mismatch repair-deficient Escherichia coli. J Bacteriol 187, 7027–7037.[CrossRef]
    [Google Scholar]
  26. Rojas, G., Saldias, S., Bittner, M., Zaldivar, M. & Contreras, I. ( 2001; ). The rfaH gene, which affects lipopolysaccharide synthesis in Salmonella enterica serovar Typhi, is differentially expressed during the bacterial growth phase. FEMS Microbiol Lett 204, 123–128.[CrossRef]
    [Google Scholar]
  27. Sandlin, R. C., Lampel, K. A., Keasler, S. P., Goldberg, M. B., Stolzer, A. L. & Maurelli, A. T. ( 1995; ). Avirulence of rough mutants of Shigella flexneri: requirement of O antigen for correct unipolar localization of IcsA in the bacterial outer membrane. Infect Immun 63, 229–237.
    [Google Scholar]
  28. Sansonetti, P. J. ( 2001; ). Microbes and microbial toxins: paradigms for microbial–mucosal interactions III. Shigellosis: from symptoms to molecular pathogenesis. Am J Physiol Gastrointest Liver Physiol 280, G319–G323.
    [Google Scholar]
  29. Sansonetti, P. J. & Egile, C. ( 1998; ). Molecular bases of epithelial cell invasion by Shigella flexneri. Antonie Van Leeuwenhoek 74, 191–197.[CrossRef]
    [Google Scholar]
  30. Seshasayee, A. S. ( 2007; ). An assessment of the role of DNA adenine methyltransferase on gene expression regulation in E. coli. PLoS ONE 2, e273 [CrossRef]
    [Google Scholar]
  31. Stafford, G. P., Ogi, T. & Hughes, C. ( 2005; ). Binding and transcriptional activation of non-flagellar genes by the Escherichia coli flagellar master regulator. Microbiology 151, 1779–1788.[CrossRef]
    [Google Scholar]
  32. Stevenson, G., Kessler, A. & Reeves, P. R. ( 1995; ). A plasmid-borne O-antigen chain length determinant and its relationship to other chain length determinants. FEMS Microbiol Lett 125, 23–30.[CrossRef]
    [Google Scholar]
  33. Valvano, M. A. ( 2003; ). Export of O-specific lipopolysaccharide. Front Biosci 8, s452–s471.[CrossRef]
    [Google Scholar]
  34. Van den Bosch, L. & Morona, R. ( 2003; ). The actin-based motility defect of a Shigella flexneri rmlD rough LPS mutant is not due to loss of IcsA polarity. Microb Pathog 35, 11–18.[CrossRef]
    [Google Scholar]
  35. Van den Bosch, L., Manning, P. A. & Morona, R. ( 1997; ). Regulation of O-antigen chain length is required for Shigella flexneri virulence. Mol Microbiol 23, 765–775.[CrossRef]
    [Google Scholar]
  36. Varela, G., Schelotto, F., di Conza, J. & Ayala, J. A. ( 2001; ). Analysis of the O-antigen chain length distribution during extracellular and intracellular growth of Shigella flexneri. Microb Pathog 31, 21–27.[CrossRef]
    [Google Scholar]
  37. Wang, L., Jensen, S., Hallman, R. & Reeves, P. R. ( 1998; ). Expression of the O antigen gene cluster is regulated by RfaH through the JUMPstart sequence. FEMS Microbiol Lett 165, 201–206.[CrossRef]
    [Google Scholar]
  38. Wang, Q., Frye, J. G., McClelland, M. & Harshey, R. M. ( 2004; ). Gene expression patterns during swarming in Salmonella typhimurium: genes specific to surface growth and putative new motility and pathogenicity genes. Mol Microbiol 52, 169–187.[CrossRef]
    [Google Scholar]
  39. Wei, J., Goldberg, M. B., Burland, V., Venkatesan, M. M., Deng, W., Fournier, G., Mayhew, G. F., Plunkett, G., III, Rose, D. J. & other authors ( 2003; ). Complete genome sequence and comparative genomics of Shigella flexneri serotype 2a strain 2457T. Infect Immun 71, 2775–2786.[CrossRef]
    [Google Scholar]
  40. Whitfield, C. ( 1995; ). Biosynthesis of lipopolysaccharide O antigens. Trends Microbiol 3, 178–185.[CrossRef]
    [Google Scholar]
  41. Zhong, Q. P. ( 1999; ). Pathogenic effects of O polysaccharide from Shigella flexneri strain. World J Gastroenterol 5, 245–248.
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.2007/010066-0
Loading
/content/journal/micro/10.1099/mic.0.2007/010066-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error