1887

Abstract

Flavonoids comprise a large group of bioactive polyphenolic plant secondary metabolites. Several of these possess potent activity against and , targeting enzymes involved in fatty acid biosynthesis, such as enoyl-ACP-reductase, -ketoacyl-ACP reductase and -hydroxyacyl-ACP dehydratase. Herein, we report that butein, isoliquirtigenin, 2,2′,4′-trihydroxychalcone and fisetin inhibit the growth of BCG. Furthermore, inhibition of the mycolic-acid-producing fatty acid synthase II (FAS-II) of suggests a mode of action related to those observed in and . Through a bioinformatic approach, we have established the product of as a candidate for the unknown mycobacterial dehydratase, and its overexpression in BCG conferred resistance to growth inhibition by butein and isoliquirtigenin, and relieved inhibition of fatty acid and mycolic acid biosynthesis . Furthermore, after overexpression of in , FAS-II was less sensitive to these inhibitors . Overall, the data suggest that these flavonoids are inhibitors of mycobacterial FAS-II and in particular Rv0636, which represents a strong candidate for the -hydroxyacyl-ACP dehydratase enzyme of FAS-II.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.2007/009936-0
2007-10-01
2019-11-21
Loading full text...

Full text loading...

/deliver/fulltext/micro/153/10/3314.html?itemId=/content/journal/micro/10.1099/mic.0.2007/009936-0&mimeType=html&fmt=ahah

References

  1. Banerjee, A., Dubnau, E., Quemard, A., Balasubramanian, V., Um, K. S., Wilson, T., Collins, D., de Lisle, G. & Jacobs, W. R., Jr ( 1994; ). inhA, a gene encoding a target for isoniazid and ethionamide in Mycobacterium tuberculosis. Science 263, 227–230.[CrossRef]
    [Google Scholar]
  2. Banerjee, A., Sugantino, M., Sacchettini, J. C. & Jacobs, W. R., Jr ( 1998; ). The mabA gene from the inhA operon of Mycobacterium tuberculosis encodes a 3-ketoacyl reductase that fails to confer isoniazid resistance. Microbiology 144, 2697–2704.[CrossRef]
    [Google Scholar]
  3. Belanger, A. E., Besra, G. S., Ford, M. E., Mikusova, K., Belisle, J. T., Brennan, P. J. & Inamine, J. M. ( 1996; ). The embAB genes of Mycobacterium avium encode an arabinosyl transferase involved in cell wall arabinan biosynthesis that is the target for the antimycobacterial drug ethambutol. Proc Natl Acad Sci U S A 93, 11919–11924.[CrossRef]
    [Google Scholar]
  4. Brennan, P. J. & Nikaido, H. ( 1995; ). The envelope of mycobacteria. Annu Rev Biochem 64, 29–63.[CrossRef]
    [Google Scholar]
  5. Brown, A. K., Sridharan, S., Kremer, L., Lindenberg, S., Dover, L. G., Sacchettini, J. C. & Besra, G. S. ( 2005; ). Probing the mechanism of the Mycobacterium tuberculosis β-ketoacyl-acyl carrier protein synthase III mtFabH: factors influencing catalysis and substrate specificity. J Biol Chem 280, 32539–32547.[CrossRef]
    [Google Scholar]
  6. Castell, A., Johansson, P., Unge, T., Jones, T. A. & Backbro, K. ( 2005; ). Rv0216, a conserved hypothetical protein from Mycobacterium tuberculosis that is essential for bacterial survival during infection, has a double hotdog fold. Protein Sci 14, 1850–1862.[CrossRef]
    [Google Scholar]
  7. Centers for Disease Control and Prevention ( 2006; ). Emergence of Mycobacterium tuberculosis with extensive resistance to second-line drugs – worldwide, 2000–2004. MMWR Morb Mortal Wkly Rep 55, 301–305.
    [Google Scholar]
  8. Cole, S. T., Brosch, R., Parkhill, J., Garnier, T., Churcher, C., Harris, D., Gordon, S. V., Eiglmeier, K., Gas, S. & other authors ( 1998; ). Deciphering the biology of Mycobacterium tuberculosis from the complete genome sequence. Nature 393, 537–544.[CrossRef]
    [Google Scholar]
  9. Cos, P., Ying, L., Calomme, M., Hu, J. P., Cimanga, K., Van Poel, B., Pieters, L., Vlietinck, A. J. & Vanden Berghe, D. ( 1998; ). Structure–activity relationship and classification of flavonoids as inhibitors of xanthine oxidase and superoxide scavengers. J Nat Prod 61, 71–76.[CrossRef]
    [Google Scholar]
  10. Dover, L. G., Cerdeno-Tarraga, A. M., Pallen, M. J., Parkhill, J. & Besra, G. S. ( 2004; ). Comparative cell wall core biosynthesis in the mycolated pathogens, Mycobacterium tuberculosis and Corynebacterium diphtheriae. FEMS Microbiol Rev 28, 225–250.[CrossRef]
    [Google Scholar]
  11. Dover, L. G., Alahari, A., Gratraud, P., Gomes, J. M., Bhowruth, V., Reynolds, R. C., Besra, G. S. & Kremer, L. ( 2007; ). EthA, a common activator of thiocarbamide-containing drugs acting on different mycobacterial targets. Antimicrob Agents Chemother 51, 1055–1063.[CrossRef]
    [Google Scholar]
  12. Dye, C. ( 2006; ). Global epidemiology of tuberculosis. Lancet 367, 938–940.[CrossRef]
    [Google Scholar]
  13. Eiglmeier, K., Parkhill, J., Honore, N., Garnier, T., Tekaia, F., Telenti, A., Klatser, P., James, K. D., Thomson, N. R. & other authors ( 2001; ). The decaying genome of Mycobacterium leprae. Lepr Rev 72, 387–398.
    [Google Scholar]
  14. Franzblau, S. G., Witzig, R. S., McLaughlin, J. C., Torres, P., Madico, G., Hernandez, A., Degnan, M. T., Cook, M. B., Quenzer, V. K. & other authors ( 1998; ). Rapid, low-technology MIC determination with clinical Mycobacterium tuberculosis isolates by using the microplate Alamar Blue assay. J Clin Microbiol 36, 362–366.
    [Google Scholar]
  15. Fukui, T. & Doi, Y. ( 1997; ). Cloning and analysis of the poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) biosynthesis genes of Aeromonas caviae. J Bacteriol 179, 4821–4830.
    [Google Scholar]
  16. Gande, R., Gibson, K. J., Brown, A. K., Krumbach, K., Dover, L. G., Sahm, H., Shioyama, S., Oikawa, T., Besra, G. S. & Eggeling, L. ( 2004; ). Acyl-CoA carboxylases (accD2 and accD3), together with a unique polyketide synthase (Cg-pks), are key to mycolic acid biosynthesis in Corynebacterianeae such as Corynebacterium glutamicum and Mycobacterium tuberculosis. J Biol Chem 279, 44847–44857.[CrossRef]
    [Google Scholar]
  17. Harborne, J. B. & Williams, C. A. ( 2000; ). Advances in flavonoid research since 1992. Phytochemistry 55, 481–504.[CrossRef]
    [Google Scholar]
  18. Hisano, T., Tsuge, T., Fukui, T., Iwata, T., Miki, K. & Doi, Y. ( 2003; ). Crystal structure of the (R)-specific enoyl-CoA hydratase from Aeromonas caviae involved in polyhydroxyalkanoate biosynthesis. J Biol Chem 278, 617–624.
    [Google Scholar]
  19. Kaye, K. & Frieden, T. R. ( 1996; ). Tuberculosis control: the relevance of classic principles in an era of acquired immunodeficiency syndrome and multidrug resistance. Epidemiol Rev 18, 52–63.[CrossRef]
    [Google Scholar]
  20. Kikuchi, S. & Kusaka, T. ( 1984; ). Purification of NADPH-dependent enoyl-CoA reductase involved in the malonyl-CoA dependent fatty acid elongation system of Mycobacterium smegmatis. J Biochem (Tokyo) 96, 841–848.
    [Google Scholar]
  21. Koes, R. E., Quattrocchio, F. & Mol, J. N. M. ( 1994; ). The flavonoid biosynthetic pathway in plants – function and evolution. Bioessays 16, 123–132.[CrossRef]
    [Google Scholar]
  22. Kremer, L., Baulard, A., Estaquier, J., Content, J., Capron, A. & Locht, C. ( 1995; ). Analysis of the Mycobacterium tuberculosis 85A antigen promoter region. J Bacteriol 177, 642–653.
    [Google Scholar]
  23. Kremer, L., Douglas, J. D., Baulard, A. R., Morehouse, C., Guy, M. R., Alland, D., Dover, L. G., Lakey, J. H., Jacobs, W. R. & other authors ( 2000; ). Thiolactomycin and related analogues as novel anti-mycobacterial agents targeting KasA and KasB condensing enzymes in Mycobacterium tuberculosis. J Biol Chem 275, 16857–16864.[CrossRef]
    [Google Scholar]
  24. Kremer, L., Nampoothiri, K. M., Lesjean, S., Dover, L. G., Graham, S., Betts, J., Brennan, P. J., Minnikin, D. E., Locht, C., Besra, G. S. & other authors ( 2001; ). Biochemical characterization of acyl carrier protein (AcpM) and malonyl-CoA : AcpM transacylase (mtFabD), two major components of Mycobacterium tuberculosis fatty acid synthase II. J Biol Chem 276, 27967–27974.[CrossRef]
    [Google Scholar]
  25. Kremer, L., Dover, L. G., Carrere, S., Nampoothiri, K. M., Lesjean, S., Brown, A. K., Brennan, P. J., Minnikin, D. E., Locht, C., Besra, G. S. & other authors ( 2002; ). Mycolic acid biosynthesis and enzymic characterization of the beta-ketoacyl-ACP synthase A-condensing enzyme from Mycobacterium tuberculosis. Biochem J 364, 423–430.[CrossRef]
    [Google Scholar]
  26. Larsen, M. H., Vilcheze, C., Kremer, L., Besra, G. S., Parsons, L., Salfinger, M., Heifets, L., Hazbon, M. H., Alland, D. & other authors ( 2002; ). Overexpression of inhA, but not kasA, confers resistance to isoniazid and ethionamide in Mycobacterium smegmatis, M. bovis BCG and M. tuberculosis. Mol Microbiol 46, 453–466.[CrossRef]
    [Google Scholar]
  27. Lea-Smith, D. J., Pyke, J. S., Tull, D., McConville, M. J., Coppel, R. L. & Crellin, P. K. ( 2007; ). The reductase that catalyzes mycolic motif synthesis is required for efficient attachment of mycolic acids to arabinogalactan. J Biol Chem 282, 11000–11008.[CrossRef]
    [Google Scholar]
  28. Li, B. H. & Tian, W. X. ( 2004; ). Inhibitory effects of flavonoids on animal fatty acid synthase. J Biochem (Tokyo) 135, 85–91.[CrossRef]
    [Google Scholar]
  29. Li, X. C., Joshi, A. S., ElSohly, H. N., Khan, S. I., Jacob, M. R., Zhang, Z., Khan, I. A., Ferreira, D., Walker, L. A. & other authors ( 2002; ). Fatty acid synthase inhibitors from plants: isolation, structure elucidation, and SAR studies. J Nat Prod 65, 1909–1914.[CrossRef]
    [Google Scholar]
  30. Mdluli, K., Slayden, R. A., Zhu, Y., Ramaswamy, S., Pan, X., Mead, D., Crane, D. D., Musser, J. M. & Barry, C. E., III ( 1998; ). Inhibition of a Mycobacterium tuberculosis β-ketoacyl ACP synthase by isoniazid. Science 280, 1607–1610.[CrossRef]
    [Google Scholar]
  31. Paolo, W. F., Jr & Nosanchuk, J. D. ( 2004; ). Tuberculosis in New York city: recent lessons and a look ahead. Lancet Infect Dis 4, 287–293.[CrossRef]
    [Google Scholar]
  32. Portevin, D., de Sousa-D'Auria, C., Montrozier, H., Houssin, C., Stella, A., Laneelle, M. A., Bardou, F., Guilhot, C. & Daffe, M. ( 2005; ). The acyl-AMP ligase FadD32 and AccD4-containing acyl-CoA carboxylase are required for the synthesis of mycolic acids and essential for mycobacterial growth: identification of the carboxylation product and determination of the acyl-CoA carboxylase components. J Biol Chem 280, 8862–8874.[CrossRef]
    [Google Scholar]
  33. Qin, Y. M., Haapalainen, A. M., Kilpelainen, S. H., Marttila, M. S., Koski, M. K., Glumoff, T., Novikov, D. K. & Hiltunen, J. K. ( 2000; ). Human peroxisomal multifunctional enzyme type 2. Site-directed mutagenesis studies show the importance of two protic residues for 2-enoyl-CoA hydratase 2 activity. J Biol Chem 275, 4965–4972.[CrossRef]
    [Google Scholar]
  34. Radmacher, E., Alderwick, L. J., Besra, G. S., Brown, A. K., Gibson, K. J. C., Sahm, H. & Eggeling, L. ( 2005; ). Two functional FAS-I type fatty acid synthases in Corynebacterium glutamicum. Microbiology 151, 2421–2427.[CrossRef]
    [Google Scholar]
  35. Sambrook, J. & Russell, D. W. ( 2001; ). Molecular Cloning: A Laboratory Manual, 3rd edn. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory.
  36. Sassetti, C. M., Boyd, D. H. & Rubin, E. J. ( 2003; ). Genes required for mycobacterial growth defined by high density mutagenesis. Mol Microbiol 48, 77–84.[CrossRef]
    [Google Scholar]
  37. Sauton, B. ( 1912; ). Sur la nutrition minérale du bacille tuberculeux. C R Hebd Seances Acad Sci 155, 860–861.
    [Google Scholar]
  38. Schaeffer, M. L., Agnihotri, G., Volker, C., Kallender, H., Brennan, P. J. & Lonsdale, J. T. ( 2001; ). Purification and biochemical characterization of the Mycobacterium tuberculosis β-ketoacyl-acyl carrier protein synthases KasA and KasB. J Biol Chem 276, 47029–47037.[CrossRef]
    [Google Scholar]
  39. Sharma, S. K., Parasuraman, P., Kumar, G., Surolia, N. & Surolia, A. ( 2007; ). Green tea catechins potentiate triclosan binding to enoyl-ACP reductase from Plasmodium falciparum (PfENR). J Med Chem 50, 765–775.[CrossRef]
    [Google Scholar]
  40. Slayden, R. A., Lee, R. E., Armour, J. W., Cooper, A. M., Orme, I. M., Brennan, P. J. & Besra, G. S. ( 1996; ). Antimycobacterial action of thiolactomycin: an inhibitor of fatty acid and mycolic acid synthesis. Antimicrob Agents Chemother 40, 2813–2819.
    [Google Scholar]
  41. Smith, S., Witkowski, A. & Joshi, A. K. ( 2003; ). Structural and functional organization of the animal fatty acid synthase. Prog Lipid Res 42, 289–317.[CrossRef]
    [Google Scholar]
  42. Takayama, K., Wang, C. & Besra, G. S. ( 2005; ). Pathway to synthesis and processing of mycolic acids in Mycobacterium tuberculosis. Clin Microbiol Rev 18, 81–101.[CrossRef]
    [Google Scholar]
  43. Tasdemir, D., Lack, G., Brun, R., Ruedi, P., Scapozza, L. & Perozzo, R. ( 2006; ). Inhibition of Plasmodium falciparum fatty acid biosynthesis: evaluation of FabG, FabZ, and FabI as drug targets for flavonoids. J Med Chem 49, 3345–3353.[CrossRef]
    [Google Scholar]
  44. Vissa, V. D. & Brennan, P. J. ( 2001; ). The genome of Mycobacterium leprae: a minimal mycobacterial gene set. Genome Biol 2, 1–7.
    [Google Scholar]
  45. Wang, X., Song, K. S., Guo, Q. X. & Tian, W. X. ( 2003; ). The galloyl moiety of green tea catechins is the critical structural feature to inhibit fatty-acid synthase. Biochem Pharmacol 66, 2039–2047.[CrossRef]
    [Google Scholar]
  46. Zhang, Y. M. & Rock, C. O. ( 2004; ). Evaluation of epigallocatechin gallate and related plant polyphenols as inhibitors of the FabG and FabI reductases of bacterial type II fatty-acid synthase. J Biol Chem 279, 30994–31001.[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.2007/009936-0
Loading
/content/journal/micro/10.1099/mic.0.2007/009936-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error