1887

Abstract

The degradation of taurine, isethionate and sulfoacetate in () H16 was shown by enzyme assays to be inducible, and each pathway involved sulfoacetaldehyde, which was subject to phosphatolysis by a common sulfoacetaldehyde acetyltransferase (Xsc, H16_B1870) to yield acetyl phosphate and sulfite. The neighbouring genes encoded phosphate acetyltransferase (Pta, H16_B1871) and a hypothetical protein [domain of unknown function (DUF)81, H16_B1872], with eight derived transmembrane helices. RT-PCR showed inducible transcription of these three genes, and led to the hypothesis that H16_B1872 and orthologous proteins represent a sulfite exporter, which was named TauE.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.2007/009845-0
2007-09-01
2019-10-17
Loading full text...

Full text loading...

/deliver/fulltext/micro/153/9/3055.html?itemId=/content/journal/micro/10.1099/mic.0.2007/009845-0&mimeType=html&fmt=ahah

References

  1. Altschul, S. F., Gish, W., Miller, W., Myers, E. W. & Lipman, D. J. ( 1990; ). Basic local alignment search tool. J Mol Biol 215, 403–410.[CrossRef]
    [Google Scholar]
  2. Bergmeyer, H. U., Graßl, M. & Walter, E.-M. ( 1983; ). Phosphotransacetylase. In Methods of Enzymatic Analysis, pp. 295–296. Edited by H. U. Bergmeyer. Weinheim: Verlag Chemie.
  3. Brüggemann, C., Denger, K., Cook, A. M. & Ruff, J. ( 2004; ). Enzymes and genes of taurine and isethionate dissimilation in Paracoccus denitrificans. Microbiology 150, 805–816.[CrossRef]
    [Google Scholar]
  4. Cook, A. M. & Denger, K. ( 2002; ). Dissimilation of the C2 sulfonates. Arch Microbiol 179, 1–6.[CrossRef]
    [Google Scholar]
  5. Cook, A. M. & Denger, K. ( 2006; ). Metabolism of taurine in microorganisms: a primer in molecular biodiversity?. Adv Exp Med Biol 583, 3–13.
    [Google Scholar]
  6. Cook, A. M. & Hütter, R. ( 1981; ). s-Triazines as nitrogen sources for bacteria. J Agric Food Chem 29, 1135–1143.[CrossRef]
    [Google Scholar]
  7. Cook, A. M., Denger, K. & Smits, T. H. M. ( 2006; ). Dissimilation of C3-sulfonates. Arch Microbiol 185, 83–90.[CrossRef]
    [Google Scholar]
  8. Cook, A. M., Smits, T. H. M. & Denger, K. ( 2007; ). Organosulfonates and heterotrophic sulfite metabolism. In Microbial Sulfur Metabolism. Edited by C. Dahl & C. G. Friedrich. Berlin/Heidelberg: Springer Verlag (in press).
  9. Denger, K. & Cook, A. M. ( 2001; ). Ethanedisulfonate is degraded via sulfoacetaldehyde in Ralstonia sp. strain EDS1. Arch Microbiol 176, 89–95.[CrossRef]
    [Google Scholar]
  10. Denger, K., Laue, H. & Cook, A. M. ( 1997; ). Anaerobic taurine oxidation: a novel reaction by a nitrate-reducing Alcaligenes sp. Microbiology 143, 1919–1924.[CrossRef]
    [Google Scholar]
  11. Denger, K., Weinitschke, S., Hollemeyer, K. & Cook, A. M. ( 2004; ). Sulfoacetate generated by Rhodopseudomonas palustris from taurine. Arch Microbiol 182, 254–258.
    [Google Scholar]
  12. Denger, K., Smits, T. H. M. & Cook, A. M. ( 2006a; ). l-Cysteate sulpho-lyase, a widespread, pyridoxal 5′-phosphate-coupled desulphonative enzyme purified from Silicibacter pomeroyi DSS-3T. Biochem J 394, 657–664.[CrossRef]
    [Google Scholar]
  13. Denger, K., Smits, T. H. M. & Cook, A. M. ( 2006b; ). Genome-enabled analysis of the utilization of taurine as sole source of carbon or nitrogen by Rhodobacter sphaeroides 2.4.1. Microbiology 152, 3197–3206.[CrossRef]
    [Google Scholar]
  14. Desomer, J., Crespi, M. & Van Montagu, M. ( 1991; ). Illegitimate integration of non-replicative vectors in the genome of Rhodococcus fascians upon electrotransformation as an insertional mutagenesis system. Mol Microbiol 5, 2115–2124.[CrossRef]
    [Google Scholar]
  15. Gorzynska, A. K., Denger, K., Cook, A. M. & Smits, T. H. M. ( 2006; ). Inducible transcription of genes involved in taurine uptake and dissimilation by Silicibacter pomeroyi DSS-3. Arch Microbiol 185, 402–406.[CrossRef]
    [Google Scholar]
  16. Innis, M. A., Gelfand, D. H., Sninsky, J. J. & White, T. J. ( 1990; ). PCR Protocols. A Guide to Methods and Applications. San Diego: Academic Press.
  17. Junker, F., Leisinger, T. & Cook, A. M. ( 1994; ). 3-Sulphocatechol 2,3-dioxygenase and other dioxygenases (EC 1.13.11.2 and EC 1.14.12.-) in the degradative pathways of 2-aminobenzenesulphonic, benzenesulphonic and 4-toluenesulphonic acids in Alcaligenes sp. strain O-1. Microbiology 140, 1713–1722.[CrossRef]
    [Google Scholar]
  18. Kappler, U., Bennett, B., Rethmeier, J., Schwarz, G., Deutzmann, R., McEwan, A. G. & Dahl, C. ( 2000; ). Sulfite : cytochrome c oxidoreductase from Thiobacillus novellus. Purification, characterization, and molecular biology of a heretodimeric member of the sulfite oxidase family. J Biol Chem 275, 13202–13212.[CrossRef]
    [Google Scholar]
  19. Lawrence, S. H., Luther, K. B., Schindelin, H. & Ferry, J. G. ( 2006; ). Structural and functional studies suggest a catalytic mechanism for the phosphotransacetylase from Methanosarcina thermophila. J Bacteriol 188, 1143–1154.[CrossRef]
    [Google Scholar]
  20. Mampel, J., Maier, E., Tralau, T., Ruff, J., Benz, R. & Cook, A. M. ( 2004; ). A novel outer-membrane anion channel (porin) as part of a putatively two-component transport system for 4-toluenesulphonate in Comamonas testosteroni T-2. Biochem J 383, 91–99.[CrossRef]
    [Google Scholar]
  21. Pohlmann, A., Fricke, W. F., Reinecke, F., Kusian, B., Liesegang, H., Cramm, R., Eitinger, T., Ewering, C., Pötter, M. & other authors ( 2006; ). Genome sequence of the bioplastic-producing ‘Knallgas’ bacterium Ralstonia eutropha H16. Nat Biotechnol 24, 1257–1262.[CrossRef]
    [Google Scholar]
  22. Reichenbecher, W., Kelly, D. P. & Murrell, J. C. ( 1999; ). Desulfonation of propanesulfonic acid by Comamonas acidovorans strain P53: evidence for an alkanesulfonate sulfonatase and an atypical sulfite dehydrogenase. Arch Microbiol 172, 387–392.[CrossRef]
    [Google Scholar]
  23. Rein, U., Gueta, R., Denger, K., Ruff, J., Hollemeyer, K. & Cook, A. M. ( 2005; ). Dissimilation of cysteate via 3-sulfolactate sulfo-lyase and a sulfate exporter in Paracoccus pantotrophus NKNCYSA. Microbiology 151, 737–747.[CrossRef]
    [Google Scholar]
  24. Rückert, C., Koch, D. J., Rey, D. A., Albersmeier, A., Mormann, S., Pühler, A. & Kalinowski, J. ( 2005; ). Functional genomics and expression analysis of the Corynebacterium glutamicum fpr2-cysIXHDNYZ gene cluster involved in assimilatory sulphate reduction. BMC Genomics 6, 121 [CrossRef]
    [Google Scholar]
  25. Ruff, J., Denger, K. & Cook, A. M. ( 2003; ). Sulphoacetaldehyde acetyltransferase yields acetyl phosphate: purification from Alcaligenes defragrans and gene clusters in taurine degradation. Biochem J 369, 275–285.[CrossRef]
    [Google Scholar]
  26. Sambrook, J., Fritsch, E. F. & Maniatis, T. ( 1989; ). Molecular Cloning: a Laboratory Manual, 2nd edn. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory.
  27. Sörbo, B. ( 1987; ). Sulfate: turbidimetric and nephelometric methods. Methods Enzymol 143, 3–6.
    [Google Scholar]
  28. Styp von Rekowski, K., Denger, K. & Cook, A. M. ( 2005; ). Isethionate as a product from taurine during nitrogen-limited growth of Klebsiella oxytoca TauN1. Arch Microbiol 183, 325–330.[CrossRef]
    [Google Scholar]
  29. Thurnheer, T., Köhler, T., Cook, A. M. & Leisinger, T. ( 1986; ). Orthanilic acid and analogues as carbon sources for bacteria: growth physiology and enzymic desulphonation. J Gen Microbiol 132, 1215–1220.
    [Google Scholar]
  30. Weinitschke, S., Denger, K., Smits, T. H. M., Hollemeyer, K. & Cook, A. M. ( 2006; ). The sulfonated osmolyte N-methyltaurine is dissimilated by Alcaligenes faecalis and by Paracoccus versutus with release of methylamine. Microbiology 152, 1179–1186.[CrossRef]
    [Google Scholar]
  31. Weisburg, W. G., Barns, S. M., Pelletier, D. A. & Lane, D. J. ( 1991; ). 16S ribosomal DNA amplification for phylogenetic study. J Bacteriol 173, 697–703.
    [Google Scholar]
  32. Yi, H., Lim, Y. W. & Chun, J. ( 2007; ). Taxonomic evaluation of the genera Ruegeria and Silicibacter: a proposal to transfer the genus Silicibacter Petursdottir and Kristjansson 1999 to the genus Ruegeria Uchino et al. 1999. Int J Syst Evol Microbiol 57, 815–819.[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.2007/009845-0
Loading
/content/journal/micro/10.1099/mic.0.2007/009845-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error