1887

Abstract

The anaerobic utilization of -ascorbate by gene products of the regulon in has been widely documented. Under aerobic conditions, we have shown that this metabolism is only functional in the presence of casein acid hydrolysate. Transcriptional fusions and proteomic analysis indicated that both the regulon and the operon are required for the aerobic utilization of this compound. The aerobic dissimilation of -ascorbate shares the function of three paralogous proteins, UlaD/YiaQ, UlaE/YiaR and UlaF/YiaS, which encode a decarboxylase, a 3-epimerase and a 4-epimerase, respectively. In contrast, -ascorbate enters the cells through the encoded phosphotransferase transport system, but it is not carried by the encoded ABC transporter. Proteomic analysis also indicated enhanced expression of the alkyl hydroperoxide reductase encoded by the gene, suggesting a response to oxidative stress generated during the aerobic metabolism of -ascorbate. Control of expression by the OxyR global regulator in response to -ascorbate concentration is consistent with the formation of hydrogen peroxide under our experimental conditions. The presence of certain amino acids such as proline, threonine or glutamine in the culture medium allowed aerobic -ascorbate utilization by cells. This effect could be explained by the ability of these amino acids to allow operon induction by -ascorbate, thus increasing the metabolic flux of -ascorbate dissimilation. Alternatively, these amino acids may slow the rate of -ascorbate oxidation.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.2007/009613-0
2007-10-01
2020-07-09
Loading full text...

Full text loading...

/deliver/fulltext/micro/153/10/3399.html?itemId=/content/journal/micro/10.1099/mic.0.2007/009613-0&mimeType=html&fmt=ahah

References

  1. Altuvia S., Almiron M., Huisman G., Kolter R., Storz G.. 1994; The dps promoter is activated by OxyR during growth and by IHF and sigma S in stationary phase. Mol Microbiol13:265–272
    [Google Scholar]
  2. Aslund F., Zheng M., Beckwith J., Storz G.. 1999; Regulation of OxyR transcription factor by hydrogen peroxide and intracellular thiol-disulfide status. Proc Natl Acad Sci U S A96:6161–6165
    [Google Scholar]
  3. Badrakhan C. D., Petrat F., Holzhauser M., Fuchs A., Lomonosova E. E., de Groot H., Kirsh M.. 2004; The methanol method for the quantification of ascorbic acid and dehydroascorbic acid in biological samples. J Biochem Biophys Methods58:207–218
    [Google Scholar]
  4. Blokhina O., Virolainen E., Fagerstedt K. V.. 2003; Antioxidants, oxidative damage and oxygen deprivation stress: a review. Ann Bot (Lond91:179–194
    [Google Scholar]
  5. Boronat A., Aguilar J.. 1979; Rhamnose-induced propanediol oxidoreductase in Escherichia coli : purification, properties, and comparison with the fucose-induced enzyme. J Bacteriol140:320–326
    [Google Scholar]
  6. Campos E., Aguilar J., Baldoma L., Badia J.. 2002; The gene yjfQ encodes the repressor of the yjfR-X regulon ( ula ), which is involved in l-ascorbate metabolism in Escherichia coli . J Bacteriol184:6065–6068
    [Google Scholar]
  7. Campos E., Baldoma L., Aguilar J., Badia J.. 2004; Regulation of expression of the divergent ulaG and ulaABCDEF operon involved in l-ascorbate dissimilation in Escherichia coli . J Bacteriol186:1720–1728
    [Google Scholar]
  8. De Koning H., Diallinas G.. 2000; Nucleobase transporters. Mol Membr Biol17:75–94
    [Google Scholar]
  9. Dekker A. O., Dickinson R. G.. 1940; Oxidation of ascorbic acid by oxygen with cupric ion as catalyst. J Am Chem Soc62:2165–2171
    [Google Scholar]
  10. Demple B.. 1991; Regulation of bacterial oxidative stress genes. Annu Rev Genet25:315–337
    [Google Scholar]
  11. Elliott T.. 1992; A method for constructing single copy lac fusions in Salmonella typhimurium and its application to the hemA-prfA operon. J Bacteriol174:245–253
    [Google Scholar]
  12. Esselen W. B., Fuller J. E.. 1939; The oxidation of ascorbic acid as influenced by intestinal bacteria. J Bacteriol37:501–521
    [Google Scholar]
  13. Greenberg J. T., Demple B.. 1988; Overproducing of peroxide-scavenging enzymes in Escherichia coli suppresses spontaneous mutagenesis and sensitivity to redox-cycling agents in o xyR mutants. EMBO J7:2611–2617
    [Google Scholar]
  14. Holmes D. S., Quigley M.. 1981; A rapid boiling method for the preparation of bacterial plasmids. Anal Biochem114:193–197
    [Google Scholar]
  15. Ibañez E., Campos E., Baldomà L., Aguilar J., Badia J.. 2000a; Regulation of expression of the yiaKLMNOPQRS operon for carbohydrate utilization in Escherichia coli : involvement of the main transcriptional factors. J Bacteriol182:4617–4624
    [Google Scholar]
  16. Ibañez E., Gimenez R., Pedraza T., Baldoma L., Aguilar J., Badia J.. 2000b; Role of the yiaR and yiaS genes of Escherichia coli in metabolism of endogenously formed l-xylulose. J Bacteriol182:4625–4627
    [Google Scholar]
  17. Imlay J. A.. 2003; Pathways of oxidative damage. Annu Rev Microbiol57:395–418
    [Google Scholar]
  18. Kärkönen A., Fry S. C.. 2006; Effect of ascorbate and its oxidation products on H2O2 production in cell-suspension cultures of Picea abies and in the absence of cells. J Exp Bot57:1633–1644
    [Google Scholar]
  19. Kaul S., Sharma S. S., Mehta I. K.. 2006; Free radical scavenging potential of l-proline: evidence from in vitro assays. Amino Acids
    [Google Scholar]
  20. Lin E. C. C.. 1976; Glycerol dissimilation and its regulation in bacteria. Annu Rev Microbiol30:535–578
    [Google Scholar]
  21. Meneghini R.. 1997; Iron, homeostasis, oxidative stress, and DNA damage. Free Radic Biol Med23:783–792
    [Google Scholar]
  22. Miller J. H.. 1992; A Short Course in Bacterial Genetics Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
  23. Moslen M. T.. 1992; Protection against free radical-mediated injury. . In Free Radical Mechanisms of Tissue Injury pp203–216 Edited by Moslen M. T., Smith C. V. New York: CRC Press;
  24. Nunoshiba T., Hidalgo E., Amabile-Cuevas C. F., Demple B.. 1992; Two-stage control of an oxidative stress regulon: the Escherichia coli SoxR protein triggers redox-inducible expression of the soxS regulatory gene. J Bacteriol174:6054–6060
    [Google Scholar]
  25. Pomposiello P. J., Demple B.. 2001; Redox-operated genetic switches: the SoxR and OxyR transcription factors. Trends Biotechnol19:109–114
    [Google Scholar]
  26. Richter H. E., Loewen P. C.. 1981; Induction of catalase in Escherichia coli by ascorbic acid involves hydrogen peroxide. Biochem Biophys Res Commun100:1039–1046
    [Google Scholar]
  27. Sambrook J., Russell D. W.. 2001; Molecular Cloning: a Laboratory Manual Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
  28. Schellhorn H. E., Hassan H. M.. 1988; Transcriptional regulation of katE in Escherichia coli K-12. J Bacteriol170:4286–4292
    [Google Scholar]
  29. Seaver L. C., Imlay J. A.. 2001; Alkyl hydroperoxide reductase is the primary scavenger of endogenous hydrogen peroxide in Escherichia coli . J Bacteriol183:7173–7181
    [Google Scholar]
  30. Semsey S., Andersson A. M. C., Krishna S., Jensen M. H., Masse E., Sneppen K.. 2006; Genetic regulation of fluxes: iron homeostasis of Escherichia coli . Nucleic Acids Res34:4960–4967
    [Google Scholar]
  31. Silhavy T. J., Berman M. L., Enquist L.. 1984; Experiments with Gene Fusions Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
  32. Simons R. W., Houman F., Kleckner N.. 1987; Improved single and multicopy lac -based cloning vectors for protein and operon fusions. Gene53:85–96
    [Google Scholar]
  33. Stadtman E. R.. 1993; Oxidation of free amino acids and amino residues in proteins by radiolysis and by metal-catalyzed reactions. Annu Rev Biochem62:797–821
    [Google Scholar]
  34. Storz G., Taraglia L. A., Ames B. N.. 1990; Transcriptional regulator for oxidative stress-inducible genes: direct activation by oxidation. Science248:189–194
    [Google Scholar]
  35. Thomas G. H., Southworth T., Leon-Kempis M. R., Leech A., Kelly D. J.. 2006; Novel ligands for the extracellular solute receptors of two bacterial TRAP transporters. Microbiology152:187–198
    [Google Scholar]
  36. Volk W. A., Larsen L.. 1962; β -l-Gulonic acid as an intermediate in the bacterial metabolism of ascorbic acid. J Biol Chem237:2454–2457
    [Google Scholar]
  37. Wardman P., Candeias L. P.. 1996; Fenton chemistry: an introduction. Radiat Res145:523–531
    [Google Scholar]
  38. Winterbourn C. C.. 1995; Toxicity of iron and hydrogen peroxide: the Fenton reaction. Toxicol Lett82:83969–974
    [Google Scholar]
  39. Yan F., Williams S., Griffin G. D., Jagannathan R., Plunkett S. E., Shafer K. H.. 2005; Near-real-time determination of hydrogen peroxide generated from cigarette smoke. J Environ Monit7:681–687
    [Google Scholar]
  40. Yew W.-S., Gerlt J. A.. 2002; Utilization of l-ascorbate by Escherichia coli K-12: assignments of functions to products of the yjf-sga and yia-sgb operons. J Bacteriol184:302–306
    [Google Scholar]
  41. Young R. M., James L. H.. 1942; Action of intestinal microorganisms on ascorbic acid. J Bacteriol44:75–84
    [Google Scholar]
  42. Yu D., Ellis H. M., Lee E.-C., Jenkins N. A., Copeland N. G., Court D. L.. 2000; An efficient recombination system for chromosome engineering in Escherichia coli . Proc Natl Acad Sci U S A97:5978–5983
    [Google Scholar]
  43. Zhang Z., Aboulwafa M., Smith M. H., Saier M. H. Jr. 2003; The ascorbate transporter of Escherichia coli . J Bacteriol185:2243–2250
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.2007/009613-0
Loading
/content/journal/micro/10.1099/mic.0.2007/009613-0
Loading

Data & Media loading...

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error