1887

Abstract

Sialic acid occupies the terminal position within glycan molecules on the surfaces of many vertebrate cells, where it functions in diverse cellular processes such as intercellular adhesion and cell signalling. Pathogenic bacteria have evolved to use this molecule beneficially in at least two different ways: they can coat themselves in sialic acid, providing resistance to components of the host's innate immune response, or they can use it as a nutrient. Sialic acid itself is either synthesized by these bacteria or scavenged directly from the host. In this mini-review we will summarize recent findings relating to sialic acid transport, modification of sialic acid by -acetylation, and the mechanisms of sialic acid-mediated complement resistance.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.2007/009480-0
2007-09-01
2020-03-31
Loading full text...

Full text loading...

/deliver/fulltext/micro/153/9/2817.html?itemId=/content/journal/micro/10.1099/mic.0.2007/009480-0&mimeType=html&fmt=ahah

References

  1. Ali T., Weintraub A., Widmalm G.. 2006; Structural determination of the O-antigenic polysaccharide from the Shiga toxin-producing Escherichia coli O171. Carbohydr Res341:1878–1883
    [Google Scholar]
  2. Allen S., Zaleski A., Johnston J. W., Gibson B. W., Apicella M. A.. 2005; Novel sialic acid transporter of Haemophilus influenzae. Infect Immun73:5291–5300
    [Google Scholar]
  3. Angata T., Varki A.. 2002; Chemical diversity in the sialic acids and related alpha-keto acids: an evolutionary perspective. Chem Rev102:439–469
    [Google Scholar]
  4. Avril T., Wagner E. R., Willison H. J., Crocker P. R.. 2006; Sialic acid-binding immunoglobulin-like lectin 7 mediates selective recognition of sialylated glycans expressed on Campylobacter jejuni lipooligosaccharides. Infect Immun74:4133–4141
    [Google Scholar]
  5. Bergfeld A. K., Claus H., Vogel U., Muhlenhoff M.. 2007; Biochemical characterization of the polysialic acid specific O-acetyltransferase NeuO of Escherichia coli K1. J Biol Chem
    [Google Scholar]
  6. Bouchet V., Hood D. W., Li J., Brisson J. R., Randle G. A., Martin A., Li Z., Goldstein R., Schweda E. K.. other authors 2003; Host-derived sialic acid is incorporated into Haemophilus influenzae lipopolysaccharide and is a major virulence factor in experimental otitis media. Proc Natl Acad Sci U S A100:8898–8903
    [Google Scholar]
  7. Carlin A. F., Lewis A. L., Varki A., Nizet V.. 2007; Group B streptococcal capsular sialic acids interact with siglecs (immunoglobulin-like lectins) on human leukocytes. J Bacteriol189:1231–1237
    [Google Scholar]
  8. Chaffin D. O., Mentele L. M., Rubens C. E.. 2005; Sialylation of group B streptococcal capsular polysaccharide is mediated by cpsK and is required for optimal capsule polymerization and expression. J Bacteriol187:4615–4626
    [Google Scholar]
  9. Chang D. E., Smalley D. J., Tucker D. L., Leatham M. P., Norris W. E., Stevenson S. J., Anderson A. B., Grissom J. E., Laux D. C.. other authors 2004; Carbon nutrition of Escherichia coli in the mouse intestine. Proc Natl Acad Sci U S A101:7427–7432
    [Google Scholar]
  10. Claus H., Borrow R., Achtman M., Morelli G., Kantelberg C., Longworth E., Frosch M., Vogel U.. 2004; Genetics of capsule O-acetylation in serogroup C, W-135 and Y meningococci. Mol Microbiol51:227–239
    [Google Scholar]
  11. Condemine G., Berrier C., Plumbridge J., Ghazi A.. 2005; Function and expression of an N-acetylneuraminic acid-inducible outer membrane channel in Escherichia coli. J Bacteriol187:1959–1965
    [Google Scholar]
  12. Corfield T.. 1992; Bacterial sialidases – roles in pathogenicity and nutrition. Glycobiology2:509–521
    [Google Scholar]
  13. Deszo E. L., Steenbergen S. M., Freedberg D. I., Vimr E. R.. 2005; Escherichia coli K1 polysialic acid O-acetyltransferase gene, neuO, and the mechanism of capsule form variation involving a mobile contingency locus. Proc Natl Acad Sci U S A102:5564–5569
    [Google Scholar]
  14. Figueira M. A., Ram S., Goldstein R., Hood D. W., Moxon E. R., Pelton S. I.. 2007; Role of complement in defense of the middle ear revealed by restoring the virulence of nontypeable Haemophilus influenzae siaB mutants. Infect Immun75:325–333
    [Google Scholar]
  15. Fox K. L., Cox A. D., Gilbert M., Wakarchuk W. W., Li J., Makepeace K., Richards J. C., Moxon E. R., Hood D. W.. 2006; Identification of a bifunctional lipopolysaccharide sialyltransferase in Haemophilus influenzae: incorporation of disialic acid. J Biol Chem281:40024–40032
    [Google Scholar]
  16. Gilbert M., Brisson J. R., Karwaski M. F., Michniewicz J., Cunningham A. M., Wu Y., Young N. M., Wakarchuk W. W.. 2000; Biosynthesis of ganglioside mimics in Campylobacter jejuni OH4384. Identification of the glycosyltransferase genes, enzymatic synthesis of model compounds, and characterization of nanomole amounts by 600-MHz 1H and 13C NMR analysis. J Biol Chem275:3896–3906
    [Google Scholar]
  17. Harvey H. A., Swords W. E., Apicella M. A.. 2001; The mimicry of human glycolipids and glycosphingolipids by the lipooligosaccharides of pathogenic Neisseria and Haemophilus. J Autoimmun16:257–262
    [Google Scholar]
  18. Hood D. W., Cox A. D., Gilbert M., Makepeace K., Walsh S., Deadman M. E., Cody A., Martin A., Mansson M.. other authors 2001; Identification of a lipopolysaccharide alpha-2,3-sialyltransferase from Haemophilus influenzae. Mol Microbiol39:341–350
    [Google Scholar]
  19. Houliston R. S., Endtz H. P., Yuki N., Li J., Jarrell H. C., Koga M., van Belkum A., Karwaski M. F., Wakarchuk W. W., Gilbert M.. 2006; Identification of a sialate O-acetyltransferase from Campylobacter jejuni: demonstration of direct transfer to the C-9 position of terminal alpha-2,8-linked sialic acid. J Biol Chem281:11480–11486
    [Google Scholar]
  20. Iijima R., Takahashi H., Ikegami S., Yamazaki M.. 2007; Characterization of the reaction between sialic acid ( N-acetylneuraminic acid) and hydrogen peroxide. Biol Pharm Bull30:580–582
    [Google Scholar]
  21. Jones C., Virji M., Crocker P. R.. 2003; Recognition of sialylated meningococcal lipopolysaccharide by siglecs expressed on myeloid cells leads to enhanced bacterial uptake. Mol Microbiol49:1213–1225
    [Google Scholar]
  22. King M. R., Steenbergen S. M., Vimr E. R.. 2007; Going for baroque at the Escherichia coli K1 cell surface. Trends Microbiol15:196–202
    [Google Scholar]
  23. Lewis A. L., Hensler M. E., Varki A., Nizet V.. 2006; The group B streptococcal sialic acid O-acetyltransferase is encoded by neuD, a conserved component of bacterial sialic acid biosynthetic gene clusters. J Biol Chem281:11186–11192
    [Google Scholar]
  24. Madico G., Ngampasutadol J., Gulati S., Vogel U., Rice P. A., Ram S.. 2007; Factor H binding and function in sialylated pathogenic neisseriae is influenced by gonococcal, but not meningococcal, porin. J Immunol178:4489–4497
    [Google Scholar]
  25. Marques M. B., Kasper D. L., Pangburn M. K., Wessels M. R.. 1992; Prevention of C3 deposition by capsular polysaccharide is a virulence mechanism of type III group B streptococci. Infect Immun60:3986–3993
    [Google Scholar]
  26. Muller A., Severi E., Mulligan C., Watts A. G., Kelly D. J., Wilson K. S., Wilkinson A. J., Thomas G. H.. 2006; Conservation of structure and mechanism in primary and secondary transporters exemplified by SiaP, a sialic acid binding virulence factor from Haemophilus influenzae.. J Biol Chem281:22212–22222
    [Google Scholar]
  27. Packiam M., Shell D. M., Liu S. V., Liu Y. B., McGee D. J., Srivastava R., Seal S., Rest R. F.. 2006; Differential expression and transcriptional analysis of the alpha-2,3-sialyltransferase gene in pathogenic Neisseria spp. Infect Immun74:2637–2650
    [Google Scholar]
  28. Post D. M., Mungur R., Gibson B. W., Munson R. S. Jr. 2005; Identification of a novel sialic acid transporter in Haemophilus ducreyi. Infect Immun73:6727–6735
    [Google Scholar]
  29. Ram S., Sharma A. K., Simpson S. D., Gulati S., McQuillen D. P., Pangburn M. K., Rice P. A.. 1998; A novel sialic acid binding site on factor H mediates serum resistance of sialylated Neisseria gonorrhoeae. J Exp Med187:743–752
    [Google Scholar]
  30. Severi E., Randle G., Kivlin P., Whitfield K., Young R., Moxon R., Kelly D., Hood D., Thomas G. H.. 2005; Sialic acid transport in Haemophilus influenzae is essential for lipopolysaccharide sialylation and serum resistance and is dependent on a novel tripartite ATP-independent periplasmic transporter. Mol Microbiol58:1173–1185
    [Google Scholar]
  31. Shakhnovich E. A., King S. J., Weiser J. N.. 2002; Neuraminidase expressed by Streptococcus pneumoniae desialylates the lipopolysaccharide of Neisseria meningitidis and Haemophilus influenzae: a paradigm for interbacterial competition among pathogens of the human respiratory tract. Infect Immun70:7161–7164
    [Google Scholar]
  32. Shell D. M., Chiles L., Judd R. C., Seal S., Rest R. F.. 2002; The Neisseria lipooligosaccharide-specific alpha-2,3-sialyltransferase is a surface-exposed outer membrane protein. Infect Immun70:3744–3751
    [Google Scholar]
  33. Sohanpal B. K., El Labany S., Lahooti M., Plumbridge J. A., Blomfield I. C.. 2004; Integrated regulatory responses of fimB to N-acetylneuraminic (sialic) acid and GlcNAc in Escherichia coli K-12. Proc Natl Acad Sci U S A101:16322–16327
    [Google Scholar]
  34. Sohanpal B. K., Friar S., Roobol J., Plumbridge J. A., Blomfield I. C.. 2007; Multiple co-regulatory elements and IHF are necessary for the control of fimB expression in response to sialic acid and N-acetylglucosamine in Escherichia coli K-12. Mol Microbiol63:1223–1236
    [Google Scholar]
  35. Steenbergen S. M., Lichtensteiger C. A., Caughlan R., Garfinkle J., Fuller T. E., Vimr E. R.. 2005; Sialic acid metabolism and systemic pasteurellosis. Infect Immun73:1284–1294
    [Google Scholar]
  36. Steenbergen S. M., Lee Y. C., Vann W. F., Vionnet J., Wright L. F., Vimr E. R.. 2006; Separate pathways for O-acetylation of polymeric and monomeric sialic acids and identification of sialyl O-acetyl esterase in Escherichia coli K1. J Bacteriol188:6195–6206
    [Google Scholar]
  37. van der Woude M. W., Baumler A. J.. 2004; Phase and antigenic variation in bacteria. Clin Microbiol Rev17:581–611
    [Google Scholar]
  38. Vimr E., Lichtensteiger C.. 2002; To sialylate, or not to sialylate: that is the question. Trends Microbiol10:254–257
    [Google Scholar]
  39. Vimr E., Lichtensteiger C., Steenbergen S.. 2000; Sialic acid metabolism's dual function in Haemophilus influenzae. Mol Microbiol36:1113–1123
    [Google Scholar]
  40. Vimr E. R., Kalivoda K. A., Deszo E. L., Steenbergen S. M.. 2004; Diversity of microbial sialic acid metabolism. Microbiol Mol Biol Rev68:132–153
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.2007/009480-0
Loading
/content/journal/micro/10.1099/mic.0.2007/009480-0
Loading

Data & Media loading...

Most cited this month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error