1887

Abstract

Informational genes such as those encoding rRNAs are related to transcription and translation, and are thus considered to be rarely subject to lateral gene transfer (LGT) between different organisms, compared to operational genes having metabolic functions. However, several lines of evidence have suggested or confirmed the occurrence of LGT of DNA segments encoding evolutionarily variable regions of rRNA genes between different organisms. In the present paper, we show, for the first time to our knowledge, that variable regions of the 18S rRNA gene are segmentally replaced by multiple copies of different sequences in a single strain of the green microalga , resulting in at least 17 genotypes, nine of which were actually transcribed. Recombination between different 18S rRNA genes occurred in seven out of eight variable regions (V1–V5 and V7–V9) of eukaryotic small subunit (SSU) rRNAs. While no recombination was observed in V1, one to three different recombination loci were demonstrated for the other regions. Such segmental replacement was also implicated for helix H37, which is defined as V6 of prokaryotic SSU rRNAs. Our observations provide direct evidence for redundant recombination of an informational gene, which encodes a component of mature ribosomes, in a single strain of one organism.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.2007/009365-0
2007-11-01
2020-04-09
Loading full text...

Full text loading...

/deliver/fulltext/micro/153/11/3879.html?itemId=/content/journal/micro/10.1099/mic.0.2007/009365-0&mimeType=html&fmt=ahah

References

  1. Alverson A. J., Kolnick L.. 2005; Intragenomic nucleotide polymorphism among small subunit (18S) rDNA paralogs in the diatom genus Skeletonema (Bacillariophyta). J Phycol41:1248–1257
    [Google Scholar]
  2. Asai T., Zaporojets D., Squires C., Squires C. L.. 1999; An Escherichia coli strain with all chromosomal rRNA operons inactivated: complete exchange of rRNA genes between bacteria. Proc Natl Acad Sci U S A96:1971–1976
    [Google Scholar]
  3. Baliga N. S., Bonneau R., Facciotti M. T., Pan M., Glusman G., Deutsch E. W., Shannon P., Chiu Y., Weng R. S.. other authors 2004; Genome sequence of Haloarcula marismortui: a halophilic archaeon from the Dead Sea. Genome Res14:2221–2234
    [Google Scholar]
  4. Boucher Y., Douady C. J., Sharma A. K., Kameoka M., Doolittle W. F.. 2004; Intragenomic heterogeneity and intergenomic recombination among haloarchaeal rRNA genes. J Bacteriol186:3980–3990
    [Google Scholar]
  5. Bradley R. D., Hillis D. M.. 1997; Recombinant DNA sequences generated by PCR amplification. Mol Biol Evol14:592–593
    [Google Scholar]
  6. Buckler E. S. IV, Ippolito A., Holtsford T. P.. 1997; The evolution of ribosomal DNA: divergent paralogues and phylogenetic implications. Genetics145:821–832
    [Google Scholar]
  7. Carranza S., Giribet G., Ribera C., Baguña J., Riutort M.. 1996; Evidence that two types of 18S rDNA coexist in the genome of Dugesia ( Schmidtea) mediterranea (Platyhelminthes, Turbellaria, Tricladida). Mol Biol Evol13:824–832
    [Google Scholar]
  8. Cubero O. F., Bridge P. D., Crespo A.. 2000; Terminal-sequence conservation identifies spliceosomal introns in ascomycete 18S rRNA genes. Mol Biol Evol17:751–756
    [Google Scholar]
  9. Dávila-Aponte J. A., Huss V. A. R., Sogin M. L., Cech T. R.. 1991; A self-splicing group I intron in the nuclear pre-rRNA of the green alga, Ankistrodesmus stipitatus. Nucleic Acids Res19:4429–4436
    [Google Scholar]
  10. Dewhirst F. E., Shen Z., Scimeca M. S., Stokes L. N., Boumenna T., Chen T., Paster B. J., Fox J. G.. 2005; Discordant 16S and 23S rRNA gene phylogenies for the genus Helicobacter: implications for phylogenetic inference and systematics. J Bacteriol187:6106–6118
    [Google Scholar]
  11. Farris J. S., Källersjö M., Kluge A. G., Bult C.. 1994; Testing significance of incongruence. Cladistics10:315–319
    [Google Scholar]
  12. Felsenstein J.. 1985; Confidence limits on phylogenies: an approach using the bootstrap. Evolution39:783–791
    [Google Scholar]
  13. Felsenstein J.. 1988; Phylogenies from molecular sequences: inference and reliability. Annu Rev Genet22:521–565
    [Google Scholar]
  14. Gogarten J. P., Doolittle W. F., Lawrence J. G.. 2002; Prokaryotic evolution in light of gene transfer. Mol Biol Evol19:2226–2238
    [Google Scholar]
  15. Gunderson J. H., Sogin M. L., Wollett G., Hollingdale M., De La Cruz V. F., Waters A. P., McCutchan T. F.. 1987; Structurally distinct, stage-specific ribosomes occur in Plasmodium. Science238:933–937
    [Google Scholar]
  16. Hillis D. M., Moritz C., Porter C. A., Baker R. J.. 1991; Evidence for biased gene conservation in concerted evolution of ribosomal DNA. Science251:308–310
    [Google Scholar]
  17. Huelsenbeck J. P., Ronquist F.. 2001; mrbayes: Bayesian inference of phylogenetic trees. Bioinformatics17:754–755
    [Google Scholar]
  18. Jackson S. A., Cannone J. J., Lee J. C., Gutell R. R., Woodson S. A.. 2002; Distribution of rRNA introns in the three-dimensional structure of the ribosome. J Mol Biol323:35–52
    [Google Scholar]
  19. Jain R., Rivera M. C., Lake J. A.. 1999; Horizontal gene transfer among genomes: the complexity hypothesis. Proc Natl Acad Sci U S A96:3801–3806
    [Google Scholar]
  20. Jeeninga R. E., Van Delft Y., de Graaff-Vincent M., Dirks-Mulder A., Venema J., Raue H. A.. 1997; Variable regions V13 and V3 of Saccharomyces cerevisiae contain structural features essential for normal biogenesis and stability of 5.8S and 25S rRNA. RNA 3:476–488
    [Google Scholar]
  21. King T. C., Sirdeskmukh R., Schlessinger D.. 1986; Nucleolytic processing of ribonucleic acid transcripts in prokaryotes. Microbiol Rev50:428–451
    [Google Scholar]
  22. Krieger J., Fuerst P. A.. 2002; Evidence of multiple alleles of the nuclear 18S ribosomal RNA gene in sturgeon (Family: Acipenseridae). J Appl Ichthyol18:290–297
    [Google Scholar]
  23. Krieger J., Fuerst P. A.. 2004; Characterization of nuclear 18S rRNA gene sequence diversity and expression in an individual lake sturgeon ( Acipenser fulvescens). J Appl Ichthyol20:433–439
    [Google Scholar]
  24. Krieger J., Hett A. K., Fuerst P. A., Birstein V. J., Ludwig A.. 2006; Unusual intraindividual variation of the nuclear 18S rRNA gene is widespread within the Acipenseridae. J Hered97:218–225
    [Google Scholar]
  25. Long E. O., Dawid I. B.. 1980; Repeated genes in eukaryotes. Annu Rev Biochem49:727–764
    [Google Scholar]
  26. Marin B., Palm A., Klingberg M., Melkonian M.. 2003; Phylogeny and taxonomic revision of plastid-containing euglenophytes based on SSU rDNA sequence comparisons and synapomorphic signatures in the SSU rRNA secondary structure. Protist154:99–145
    [Google Scholar]
  27. Mashkova T. D., Serenkova T. L., Mazo A. M., Avdonina T. A., Timofeyeva Y., Kisselev L. L.. 1981; The primary structure of oocyte and somatic 5S rRNAs from the loach Misgurnus fossilis. Nucleic Acids Res9:2141–2151
    [Google Scholar]
  28. McVean G., Awadalla P., Fearnhead P.. 2002; A coalescent-based method for detecting and estimating recombination rates from gene sequences. Genetics160:1231–1241
    [Google Scholar]
  29. McVean G. A. T., Myers S., Hunt S., Deloukas P., Bentley D., Donnelly P.. 2004; The fine-scale structure of recombination rate variation in the human genome. Science304:581–584
    [Google Scholar]
  30. Miller S. R., Augustine S., Olson T. L., Blankenship R. E., Selker J., Wood A. M.. 2005; Discovery of a free-living chlorophyll d-producing cyanobacterium with a hybrid proteobacterial/cyanobacterial small-subunit rRNA gene. Proc Natl Acad Sci U S A102:850–855
    [Google Scholar]
  31. Mylvaganam S., Dennis P. P.. 1992; Sequence heterogeneity between the two genes encoding 16S rRNA from the halophilic archaebacterium Haloarcula marismortui. Genetics130:399–410
    [Google Scholar]
  32. Nomura M., Traub P., Bechmann H.. 1968; Hybrid 30S ribosomal particles reconstituted from components of different bacterial origins. Nature219:793–799
    [Google Scholar]
  33. Pore R. S.. 1998; Prototheca, a yeastlike alga. In The Yeasts, a Taxonomic Study pp881–887 Edited by Kurtzman C. P., Fell J. W. Amsterdam: Elsevier;
    [Google Scholar]
  34. Shimodaira H., Hasegawa M.. 1999; Multiple comparisons of log-likelihoods with application to phylogenetic inference. Mol Biol Evol16:1114–1116
    [Google Scholar]
  35. Sweeney R., Chen L., Yao M. C.. 1994; An rRNA variable region has an evolutionarily conserved essential role despite sequence divergence. Mol Cell Biol14:4203–4215
    [Google Scholar]
  36. Sweeney R., Fan Q., Yao M. C.. 1996; Antisense ribosomes: rRNA as a vehicle for antisense RNAs. Proc Natl Acad Sci U S A93:8518–8523
    [Google Scholar]
  37. Swofford D. L.. 2002; paup* - Phylogenetic Analysis Using Parsimony (*and other methods), version 4.0b10 Sunderland, MA: Sinauer Associates;
    [Google Scholar]
  38. Ueda K., Seki T., Kudo T., Yoshida T., Kataoka M.. 1999; Two distinct mechanisms cause heterogeneity of 16S rRNA. J Bacteriol181:78–82
    [Google Scholar]
  39. Ueno R., Hanagata N., Urano N., Suzuki M.. 2005; Molecular phylogeny and phenotypic variation in the heterotrophic green algal genus Prototheca (Trebouxiophyceae, Chlorophyta). J Phycol41:1268–1280
    [Google Scholar]
  40. Wang Y., Zhang Z.. 2000; Comparative sequence analyses reveal frequent occurrence of short segments containing an abnormally high number of non-random base variations in bacterial rRNA genes. Microbiology146:2845–2854
    [Google Scholar]
  41. Wang Y., Zhang Z., Ramanan N.. 1997; The actinomycete Thermobispora bispora contains two distinct types of transcriptionally active 16S rRNA genes. J Bacteriol179:3270–3276
    [Google Scholar]
  42. Wuyts J., De Rijk P., Van de Peer Y., Pison G., Rousseeuw P., De Wachter R.. 2000; Comparative analysis of more than 3000 sequences reveals the existence of two pseudoknots in area V4 of eukaryotic small subunit ribosomal RNA. Nucleic Acids Res28:4698–4708
    [Google Scholar]
  43. Yap W. H., Zhang Z., Wang Y.. 1999; Distinct types of rRNA operons exist in the genome of the actinomycete Thermomonospora chromogena and evidence for horizontal transfer of an entire rRNA operon. J Bacteriol181:5201–5209
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.2007/009365-0
Loading
/content/journal/micro/10.1099/mic.0.2007/009365-0
Loading

Data & Media loading...

Most cited this month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error