1887

Abstract

is a fungal human pathogen with a wide distribution in Latin America. It causes paracoccidioidomycosis, the most widespread systemic mycosis in Latin America. Although gene expression in had been studied, little is known about the genome sequences expressed by this species during the infection process. To better understand the infection process, 4934 expressed sequence tags (ESTs) derived from a non-normalized cDNA library from (isolate 01) yeast-phase cells recovered from the livers of infected mice were annotated and clustered to a UniGene (clusters containing sequences that represent a unique gene) set with 1602 members. A large-scale comparative analysis was performed between the UniGene sequences of yeast-phase cells recovered from infected mice and a database constructed with sequences of the yeast-phase and mycelium transcriptome (isolate 01) (https://dna.biomol.unb.br/Pb/), as well as with all public ESTs available at GenBank, including sequences of the yeast-phase transcriptome (isolate 18) (http://www.ncbi.nlm.nih.gov/). The focus was on the overexpressed and novel genes. From the total, 3184 ESTs (64.53 %) were also present in the previously described transcriptome of yeast-form and mycelium cells obtained from cultures (https://dna.biomol.unb.br/Pb/) and of those, 1172 ESTs (23.75 % of the described sequences) represented transcripts overexpressed during the infection process. Comparative analysis identified 1750 ESTs (35.47 % of the total), comprising 649 UniGene sequences representing novel transcripts of , not previously described for this isolate or for other isolates in public databases. KEGG pathway mapping showed that the novel and overexpressed transcripts represented standard metabolic pathways, including glycolysis, amino acid biosynthesis, lipid and sterol metabolism. The unique and divergent representation of transcripts in the cDNA library of yeast cells recovered from infected mice suggests differential gene expression in response to the host milieu.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.2007/009332-0
2007-12-01
2019-10-19
Loading full text...

Full text loading...

/deliver/fulltext/micro/153/12/4194.html?itemId=/content/journal/micro/10.1099/mic.0.2007/009332-0&mimeType=html&fmt=ahah

References

  1. Ahren, D., Troein, C., Johansson, T. & Tunlid, A. ( 2004; ). phorest: a web-based tool for comparative analyses of expressed sequence tag data. Mol Ecol Notes 4, 311–314.[CrossRef]
    [Google Scholar]
  2. Altschul, S. F., Madden, T. L., Schaffer, A. A., Zhang, J., Zhang, Z., Miller, W. & Lipman, D. J. ( 1997; ). Gapped blast and psi-blast: a new generation of protein database search programs. Nucleic Acids Res 25, 3389–3402.[CrossRef]
    [Google Scholar]
  3. Audic, S. & Claverie, J. M. ( 1997; ). The significance of digital gene expression profiles. Genome Res 7, 986–995.
    [Google Scholar]
  4. Bahn, Y. S., Cox, G. M., Perfect, J. R. & Heitman, J. ( 2005; ). Carbonic anhydrase and CO2 sensing during Cryptococcus neoformans growth, differentiation, and virulence. Curr Biol 15, 2013–2020.[CrossRef]
    [Google Scholar]
  5. Bailão, A. M., Schrank, A., Borges, C. L., Dutra, V., Molinari-Madlum, E. E. W. I., Felipe, M. S. S., Mendes-Giannini, M. J. S., Martins, W. S., Pereira, M. & Soares, C. M. A. ( 2006; ). Differential gene expression by Paracoccidioides brasiliensis in host interaction conditions: representational difference analysis identifies candidate genes associated with fungal pathogenesis. Microbes Infect 8, 2686–2697.[CrossRef]
    [Google Scholar]
  6. Barelle, C. J., Priest, C. L., MacCallum, D. M., Gow, N. A. R., Odds, F. C. & Brown, A. J. P. ( 2006; ). Niche-specific regulation of central metabolic pathways in a fungal pathogen. Cell Microbiol 8, 961–971.[CrossRef]
    [Google Scholar]
  7. Bastos, K. P., Bailão, A. M., Borges, C. L., Faria, F. P., Felipe, M. S. S., Silva, M. G., Martins, W. S., Fiúza, R. B., Pereira, M. & Soares, C. M. A. ( 2007; ). The transcriptome analysis of early morphogenesis in Paracoccidioides brasiliensis mycelium reveals novel and induced genes potentially associated to the dimorphic process. BMC Microbiol 7, 29 [CrossRef]
    [Google Scholar]
  8. Cánovas, D. & Andrianopoulos, A. ( 2006; ). Developmental regulation of the glyoxylate cycle in the human pathogen Penicillium marneffei. Mol Microbiol 62, 1725–1738.[CrossRef]
    [Google Scholar]
  9. Elliott, N. A. & Volkert, M. R. ( 2004; ). Stress induction and mitochondrial localization of Oxr1 proteins in yeast and humans. Mol Cell Biol 24, 3180–3187.[CrossRef]
    [Google Scholar]
  10. Ewing, B. & Green, P. ( 1998; ). Base-calling of automated sequencer traces using Phred. II. Error probabilities. Genome Res 8, 186–194.
    [Google Scholar]
  11. Felipe, M. S. S., Andrade, R. V., Petrofeza, S. S., Maranhao, A. Q., Torres, F. A., Albuquerque, P., Arraes, F. B., Arruda, M., Azevedo, M. O. & other authors ( 2003; ). Transcriptome characterization of the dimorphic and pathogenic fungus Paracoccidioides brasiliensis by EST analysis. Yeast 20, 263–271.[CrossRef]
    [Google Scholar]
  12. Felipe, M. S. S., Andrade, R. V., Arraes, F. B. M., Nicola, A. M., Maranhão, A. Q., Torres, F. A. G., Silva-Pereira, I., Poças-Fonseca, M. J., Campos, E. G. & other authors ( 2005; ). Transcriptional profiles of the human pathogenic fungus Paracoccidioides brasiliensis in mycelium and yeast cells. J Biol Chem 280, 24706–24714.[CrossRef]
    [Google Scholar]
  13. Gargano, S., Di Lallo, G., Kobayashi, G. S. & Maresca, B. ( 1995; ). A temperature-sensitive strain of Histoplasma capsulatum has an altered delta 9-fatty acid desaturase gene. Lipids 30, 899–906.[CrossRef]
    [Google Scholar]
  14. Goldman, G. H., dos Reis Marques, E., Duarte Ribeiro, D. C., de Souza Bernardes, L. A., Quiapin, A. C., Vitorelli, P. M., Savoldi, M., Semighini, C. P., de Oliveira, R. C. & other authors ( 2003; ). Expressed sequence tag analysis of the human pathogen Paracoccidioides brasiliensis yeast phase: identification of putative homologues of Candida albicans virulence and pathogenicity genes. Eukaryot Cell 2, 34–48.[CrossRef]
    [Google Scholar]
  15. Gomez, B. L., Nosanchuk, J. D., Diez, S., Youngchim, S., Aisen, P., Cano, L. E., Restrepo, A., Casadevall, A. & Hamilton, A. J. ( 2001; ). Detection of melanin-like pigments in the dimorphic fungal pathogen Paracoccidioides brasiliensis in vitro and during infection. Infect Immun 69, 5760–5767.[CrossRef]
    [Google Scholar]
  16. Hamilton, A. J. & Gomez, B. L. ( 2002; ). Melanins in fungal pathogens. J Med Microbiol 51, 189–191.
    [Google Scholar]
  17. Herrero, P., Flores, L., de la Cera, T. & Moreno, F. ( 1999; ). Functional characterization of transcriptional regulatory elements in the upstream element of the yeast GLK1 gene. Biochem J 343, 319–325.[CrossRef]
    [Google Scholar]
  18. Hirano, W., Gotoh, I., Uekita, T. & Seiki, M. ( 2005; ). Membrane-type 1 matrix metalloproteinase cytoplasmic tail binding protein-1 (MTCBP-1) acts as an eukaryotic aci-reductone dioxygenase (ARD) in the methionine salvage pathway. Genes Cells 10, 565–574.[CrossRef]
    [Google Scholar]
  19. Huang, X. & Madan, A. ( 1999; ). CAP3: a DNA sequence assembly program. Genome Res 9, 868–877.[CrossRef]
    [Google Scholar]
  20. Kingsbury, J. M., Goldstein, A. L. & McCusker, J. H. ( 2006; ). Role of nitrogen and carbon transport, regulation and metabolism genes for Saccharomyces cerevisiae survival in vivo. Eukaryot Cell 5, 816–824.[CrossRef]
    [Google Scholar]
  21. Klengel, T., Liang, W. J., Chaoupka, J., Ruoff, C., Schröppel, K., Naglik, J. R., Eckert, S. E., Mogensen, E. G., Haynes, K. & other authors ( 2005; ). Fungal adenyl cyclase integrates CO2 sensing with cAMP signaling and virulence. Curr Biol 15, 2021–2026.[CrossRef]
    [Google Scholar]
  22. Lorenz, M. C. & Fink, G. R. ( 2001; ). The glyoxylate cycle is required for fungal virulence. Nature 412, 83–86.[CrossRef]
    [Google Scholar]
  23. Marques, E. R., Ferreira, M. E., Drummond, R. D., Felix, J. M., Menossi, M., Savoldi, M., Travassos, L. R., Puccia, R., Batista, W. L. & other authors ( 2004; ). Identification of genes preferentially expressed in the pathogenic yeast phase of Paracoccidioides brasiliensis, using suppression subtraction hybridization and differential macroarray analysis. Mol Genet Genomics 271, 667–677.
    [Google Scholar]
  24. Mendes-Giannini, M. J., Andreotti, P. F., Vincenzi, L. R., da Silva, J. L., Lenzi, H. L., Benard, G., Zancope-Oliveira, R., de Matos Guedes, H. L. & Soares, C. P. ( 2006; ). Binding of extracellular matrix proteins to Paracoccidioides brasiliensis. Microbes Infect 8, 1550–1559.[CrossRef]
    [Google Scholar]
  25. Mirbod-Donovan, F., Schaller, R., Hung, C. Y., Xue, J., Reichard, U. & Cole, G. T. ( 2006; ). Urease produced by Coccidioides posadassi contributes to the virulence of this respiratory pathogen. Infect Immun 74, 504–515.[CrossRef]
    [Google Scholar]
  26. Montenegro, M. R. & Franco, M. ( 1994; ). Pathology. In Paracoccidioidomycosis, pp. 131–150. Edited by M. Franco, C. S. Lacaz, A. Restrepo-Moreno & G. Del Negro. Boca Raton: CRC.
  27. Nunes, L. R., Oliveira, R. C., Leite, D. B., Silva, V. S., Marques, E. R., Ferreira, M. E. S., Ribeiro, D. C., Bernardes, L. A. S., Goldman, M. H. & other authors ( 2005; ). Transcriptome analysis of Paracoccidioides brasiliensis cells undergoing mycelium-to-yeast transition. Eukaryot Cell 4, 2115–2128.[CrossRef]
    [Google Scholar]
  28. Paolo, W. F., Jr, Dadachova, E., Mandal, P., Casadevall, A., Szaniszlo, P. J. & Nosanchuk, J. D. ( 2006; ). Effects of disrupting the polyketide synthase gene WdPKS1 in Wangiella [Exophiala] dermatitidis on melanin production and resistance to killing by antifungal compounds, enzymatic degradation, and extremes in temperature. BMC Microbiol 6, 55 [CrossRef]
    [Google Scholar]
  29. Ramírez, M. A. & Lorenz, M. C. ( 2007; ). Mutations in alternative carbon utilization pathways in Candida albicans attenuate virulence and confer pleiotropic phenotypes. Eukaryot Cell 6, 280–290.[CrossRef]
    [Google Scholar]
  30. Raugei, G., Modesti, A., Magherini, F., Marzocchini, R., Vecchi, M. & Ramponi, G. ( 1996; ). Expression of acylphosphatase in Saccharomyces cerevisiae enhances ethanol fermentation rate. Biotechnol Appl Biochem 23, 273–278.
    [Google Scholar]
  31. Restrepo, A., McEwen, J. G. & Castaneda, E. ( 2001; ). The habitat of Paracoccidioides brasiliensis: how far from solving the riddle? Med Mycol 39, 233–241.[CrossRef]
    [Google Scholar]
  32. Retallack, D. M., Heinecke, E. L., Gibbons, R., Deepe, G. S., Jr & Woods, J. P. ( 1999; ). The URA5 gene is necessary for Histoplasma capsulatum growth during infection of mouse and human cells. Infect Immun 67, 624–629.
    [Google Scholar]
  33. Rude, T. H., Tolfaletti, D. L., Cox, G. M. & Perfect, J. R. ( 2002; ). Relationship of the glyoxylate pathway and pathogenesis of Cryptococcus neoformans. Infect Immun 70, 5684–5694.[CrossRef]
    [Google Scholar]
  34. Silva, M. B., Marques, A. F., Nosanchuk, J. D., Casadevall, A., Travassos, L. R. & Taborda, C. P. ( 2006; ). Melanin in the dimorphic fungal pathogen Paracoccidioides brasiliensis: effects on phagocytosis, intracellular resistance and drug susceptibility. Microbes Infect 8, 197–205.[CrossRef]
    [Google Scholar]
  35. Vigh, L., Maresca, B. & Horwood, J. L. ( 1998; ). Does the membrane's physical state control the expression of the heat shock and other genes? Trends Biochem Sci 23, 369–374.[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.2007/009332-0
Loading
/content/journal/micro/10.1099/mic.0.2007/009332-0
Loading

Data & Media loading...

Supplements

Overexpressed transcripts in yeast cells recovered from infected mouse liver [ PDF] (36 kb) Novel genes detected in yeast-phase cells recovered from infected mouse liver [ PDF] (37 kb) Clusters identified in the transcriptome project of yeast-phase cells recovered from infected mouse liver [ PDF] (113 kb)

PDF

Overexpressed transcripts in yeast cells recovered from infected mouse liver [ PDF] (36 kb) Novel genes detected in yeast-phase cells recovered from infected mouse liver [ PDF] (37 kb) Clusters identified in the transcriptome project of yeast-phase cells recovered from infected mouse liver [ PDF] (113 kb)

PDF

Overexpressed transcripts in yeast cells recovered from infected mouse liver [ PDF] (36 kb) Novel genes detected in yeast-phase cells recovered from infected mouse liver [ PDF] (37 kb) Clusters identified in the transcriptome project of yeast-phase cells recovered from infected mouse liver [ PDF] (113 kb)

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error