1887

Abstract

Global transcriptional responses to dehydration and rehydration were determined in sp. PCC 7120. Nearly 300 genes were up- or downregulated during both dehydration and rehydration. While as many as 133 genes showed dehydration-specific downregulation, only 29 genes showed dehydration-specific upregulation. In contrast, while only 13 genes showed rehydration-specific downregulation, as many as 259 genes showed rehydration-specific upregulation. The genes upregulated during rehydration responded rapidly and transiently, whereas those upregulated during dehydration did so gradually and persistently. The expression of various genes involved in DNA repair, protein folding and NAD synthesis, as well as genes responding to nitrogen depletion and CO limitation, was upregulated during rehydration. Although no genes for transcriptional regulators showed dehydration-specific upregulation, eight showed rehydration-specific upregulation. Among them, two genes, and , encode putative transcriptional activators of the cAMP receptor protein (CRP) family. DNA microarray analysis using gene disruptants revealed that AnCrpB and Alr0618 regulate the genes induced by nitrogen depletion and by CO limitation, respectively. We conclude that rehydration is a complex process in which the expression of certain genes, particularly those for metabolism, is dramatically induced.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.2007/009233-0
2007-11-01
2019-11-14
Loading full text...

Full text loading...

/deliver/fulltext/micro/153/11/3685.html?itemId=/content/journal/micro/10.1099/mic.0.2007/009233-0&mimeType=html&fmt=ahah

References

  1. Cai, Y. P. & Wolk, C. P. ( 1990; ). Use of a conditionally lethal gene in Anabaena sp. strain PCC 7120 to select for double recombinants and to entrap insertion sequences. J Bacteriol 172, 3138–3145.
    [Google Scholar]
  2. Eddy, S. R. ( 1998; ). Profile hidden Markov models. Bioinformatics 14, 755–763.[CrossRef]
    [Google Scholar]
  3. Ehira, S. & Ohmori, M. ( 2006; ). NrrA, a nitrogen-responsive response regulator facilitates heterocyst development in the cyanobacterium Anabaena sp. strain PCC 7120. Mol Microbiol 59, 1692–1703.[CrossRef]
    [Google Scholar]
  4. Ehira, S., Ohmori, M. & Sato, N. ( 2003; ). Genome-wide expression analysis of the responses to nitrogen deprivation in the heterocyst-forming cyanobacterium Anabaena sp. strain PCC 7120. DNA Res 10, 97–113.[CrossRef]
    [Google Scholar]
  5. Eisen, J. A. & Hanawalt, P. C. ( 1999; ). A phylogenomic study of DNA repair genes, proteins, and processes. Mutat Res 435, 171–213.[CrossRef]
    [Google Scholar]
  6. Elhai, J. & Wolk, C. P. ( 1988; ). Conjugal transfer of DNA to cyanobacteria. Methods Enzymol 167, 747–754.
    [Google Scholar]
  7. Elhai, J., Vepritskiy, A., Muro-Pastor, A. M., Flores, E. & Wolk, C. P. ( 1997; ). Reduction of conjugal transfer efficiency by three restriction activities of Anabaena sp. strain PCC 7120. J Bacteriol 179, 1998–2005.
    [Google Scholar]
  8. Gerdes, S. Y., Kurnasov, O. V., Shatalin, K., Polanuyer, B., Sloutsky, R., Vonstein, V., Overbeek, R. & Osterman, A. L. ( 2006; ). Comparative genomics of NAD biosynthesis in cyanobacteria. J Bacteriol 188, 3012–3023.[CrossRef]
    [Google Scholar]
  9. Helm, R. F., Huang, Z., Edwards, D., Lesson, H., Peery, W. & Potts, M. ( 2000; ). Structural characterization of the released polysaccharide of desiccation-tolerant Nostoc commune DRH-1. J Bacteriol 182, 974–982.[CrossRef]
    [Google Scholar]
  10. Hengge-Aronis, R. ( 2002; ). Signal transduction and regulatory mechanisms involved in control of the σ S (RpoS) subunit of RNA polymerase. Microbiol Mol Biol Rev 66, 373–395.[CrossRef]
    [Google Scholar]
  11. Herrero, A., Muro-Pastor, A. M. & Flores, E. ( 2001; ). Nitrogen control in cyanobacteria. J Bacteriol 183, 411–425.[CrossRef]
    [Google Scholar]
  12. Higo, A., Katoh, H., Ohmori, K., Ikeuchi, M. & Ohmori, M. ( 2006; ). The role of a gene cluster for trehalose metabolism in dehydration tolerance of the filamentous cyanobacterium Anabaena sp. PCC 7120. Microbiology 152, 979–987.[CrossRef]
    [Google Scholar]
  13. Hill, D. R., Hladun, S. L., Scherer, S. & Potts, M. ( 1994a; ). Water stress proteins of Nostoc commune (Cyanobacteria) are secreted with UV-A/B-absorbing pigments and associate with 1,4-β-d-xylanxylanohydrolase activity. J Biol Chem 269, 7726–7734.
    [Google Scholar]
  14. Hill, D. R., Peat, A. & Potts, M. ( 1994b; ). Biochemistry and structure of the glycan secreted by desiccation-tolerant Nostoc commune (cyanobacteria). Protoplasma 182, 126–148.[CrossRef]
    [Google Scholar]
  15. Hill, D. R., Keenan, T. W., Helm, R. F., Potts, M., Crowe, L. M. & Crowe, J. H. ( 1997; ). Extracellular polysaccharide of Nostoc commune (Cyanobacteria) inhibits fusion of membrane vesicles during desiccation. J Appl Phycol 9, 237–248.[CrossRef]
    [Google Scholar]
  16. Kaneko, T., Nakamura, Y., Wolk, C. P., Kuritz, T., Sasamoto, S., Watanabe, A., Iriguchi, M., Ishikawa, A., Kawashima, K. & other authors ( 2001; ). Complete genomic sequence of the filamentous nitrogen-fixing cyanobacterium Anabaena sp. strain PCC 7120. DNA Res 8, 227–253.[CrossRef]
    [Google Scholar]
  17. Katoh, H., Shiga, Y., Nakahira, Y. & Ohmori, M. ( 2003; ). Isolation and characterization of a drought-tolerant cyanobacterium, Nostoc sp. HK-01. Microbes Environ 18, 82–88.[CrossRef]
    [Google Scholar]
  18. Katoh, H., Asthana, R. K. & Ohmori, M. ( 2004; ). Gene expression in the cyanobacterium Anabaena sp. PCC 7120 under desiccation. Microb Ecol 47, 164–174.[CrossRef]
    [Google Scholar]
  19. Kratz, W. A. & Myers, J. ( 1955; ). Nutrition and growth of several blue-green algae. Am J Bot 42, 282–287.[CrossRef]
    [Google Scholar]
  20. Mackinney, G. ( 1941; ). Absorption of light by chlorophyll solution. J Biol Chem 140, 315–322.
    [Google Scholar]
  21. Nachin, L., El Hassouni, M., Loiseau, L., Expert, D. & Barras, F. ( 2001; ). SoxR-dependent response to oxidative stress and virulence of Erwinia chrysanthemi: the key role of SufC, an orphan ABC ATPase. Mol Microbiol 39, 960–972.[CrossRef]
    [Google Scholar]
  22. Oliver, A. E., Leprince, O., Wolkers, W. F., Hincha, D. K., Heyer, A. G. & Crowe, J. H. ( 2001; ). Non-disaccharide-based mechanisms of protection during drying. Cryobiology 43, 151–167.[CrossRef]
    [Google Scholar]
  23. Paithoonrangsarid, K., Shoumskaya, M. A., Kanesaki, Y., Satoh, S., Tabata, S., Los, D. A., Zinchenko, V. V., Hayashi, H., Tanticharoen, M. & other authors ( 2004; ). Five histidine kinases perceive osmotic stress and regulate distinct sets of genes in Synechocystis. J Biol Chem 279, 53078–53086.[CrossRef]
    [Google Scholar]
  24. Potts, M. ( 1994; ). Desiccation tolerance of prokaryotes. Microbiol Rev 58, 755–805.
    [Google Scholar]
  25. Potts, M. ( 1999; ). Mechanisms of desiccation tolerance in cyanobacteria. Eur J Phycol 34, 319–328.[CrossRef]
    [Google Scholar]
  26. Potts, M. ( 2001; ). Desiccation tolerance: a simple process?. Trends Microbiol 9, 553–559.[CrossRef]
    [Google Scholar]
  27. Potts, M. & Bowman, M. A. ( 1985; ). Sensitivity of Nostoc commune UTEX 584 (cyanobacteria) to water stress. Arch Microbiol 141, 51–56.[CrossRef]
    [Google Scholar]
  28. Satoh, K., Hirai, M., Nishio, J., Yamaji, T., Kashino, Y. & Koike, H. ( 2002; ). Recovery of photosynthetic systems during rewetting is quite rapid in a terrestrial cyanobacterium, Nostoc commune. Plant Cell Physiol 43, 170–176.[CrossRef]
    [Google Scholar]
  29. Scherer, S. & Potts, M. ( 1989; ). Novel water stress protein from a desiccation-tolerant cyanobacterium. J Biol Chem 264, 12546–12553.
    [Google Scholar]
  30. Scherer, S., Ernst, A., Chen, T. W. & Böger, P. ( 1984; ). Rewetting of drought resistant blue-green algae: time course of water uptake and reappearance of respiration, photosynthesis, and nitrogen fixation. Oecologia 62, 418–423.[CrossRef]
    [Google Scholar]
  31. Scherer, S., Chen, T. W. & Böger, P. ( 1986; ). Recovery of adenine-nucleotide pools in terrestrial blue-green algae after prolonged drought periods. Oecologia 68, 585–588.[CrossRef]
    [Google Scholar]
  32. Shaw, E., Hill, D. R., Brittain, N., Wright, D. J., Tauber, U., Marand, H., Helm, R. F. & Potts, M. ( 2003; ). Unusual water flux in the extracellular polysaccharide of the cyanobacterium Nostoc commune. Appl Environ Microbiol 69, 5679–5684.[CrossRef]
    [Google Scholar]
  33. Shibata, M., Ohkawa, H., Kaneko, T., Fukuzawa, H., Tabata, S., Kaplan, A. & Ogawa, T. ( 2001; ). Distinct constitutive and low-CO2-induced CO2 uptake systems in cyanobacteria: genes involved and their phylogenetic relationship with homologous genes in other organisms. Proc Natl Acad Sci U S A 98, 11789–11794.[CrossRef]
    [Google Scholar]
  34. Shirkey, B., Kovarcik, D. P., Wright, D. J., Wilmoth, G., Prickett, T. F., Helm, R. F., Gregory, E. M. & Potts, M. ( 2000; ). Active Fe-containing superoxide dismutase and abundant sodF mRNA in Nostoc commune (Cyanobacteria) after years of desiccation. J Bacteriol 182, 189–197.[CrossRef]
    [Google Scholar]
  35. Singh, J., Kumar, D., Ramakrishnan, N., Singhal, V., Jervis, J., Garst, J. F., Slaughter, S. M., DeSantis, A. M., Potts, M. & Helm, R. F. ( 2005; ). Transcriptional response of Saccharomyces cerevisiae to desiccation and rehydration. Appl Environ Microbiol 71, 8752–8763.[CrossRef]
    [Google Scholar]
  36. Suzuki, T., Yoshimura, H., Hisabori, T. & Ohmori, M. ( 2004; ). Two cAMP receptor proteins with different biochemical properties in the filamentous cyanobacterium Anabaena sp. PCC 7120. FEBS Lett 571, 154–160.[CrossRef]
    [Google Scholar]
  37. Suzuki, I., Kanesaki, Y., Hayashi, H., Hall, J. J., Simon, W. J., Slabas, A. R. & Murata, N. ( 2005; ). The histidine kinase Hik34 is involved in thermotolerance by regulating the expression of heat shock genes in Synechocystis. Plant Physiol 138, 1409–1421.[CrossRef]
    [Google Scholar]
  38. Tamaru, Y., Takani, Y., Yoshida, T. & Sakamoto, T. ( 2005; ). Crucial role of extracellular polysaccharides in desiccation and freezing tolerance in the terrestrial cyanobacterium Nostoc commune. Appl Environ Microbiol 71, 7327–7333.[CrossRef]
    [Google Scholar]
  39. Taranto, P. A., Keenan, T. W. & Potts, M. ( 1993; ). Rehydration induces rapid onset of lipid biosynthesis in desiccated Nostoc commune (cyanobacteria). Biochim Biophys Acta 1168, 228–237.[CrossRef]
    [Google Scholar]
  40. Wang, H. L., Postier, B. L. & Burnap, R. L. ( 2004; ). Alterations in global patterns of gene expression in Synechocystis sp. PCC 6803 in response to inorganic carbon limitation and the inactivation of ndhR, a LysR family regulator. J Biol Chem 279, 5739–5751.[CrossRef]
    [Google Scholar]
  41. Watanabe, A. ( 1960; ). List of algal strains in collection at the Institute of Applied Microbiology, University of Tokyo. J Gen Appl Microbiol 6, 283–292.[CrossRef]
    [Google Scholar]
  42. Wright, D. J., Smith, S. C., Joardar, V., Scherer, S., Jervis, J., Warren, A., Helm, R. F. & Potts, M. ( 2005; ). UV irradiation and desiccation modulate the three-dimensional extracellular matrix of Nostoc commune (Cyanobacteria). J Biol Chem 280, 40271–40281.[CrossRef]
    [Google Scholar]
  43. Xie, W. Q., Tice, D. & Potts, M. ( 1995; ). Cell-water deficit regulates expression of rpoC1C2 (RNA polymerase) at the level of mRNA in desiccation-tolerant Nostoc commune UTEX 584 (Cyanobacteria). FEMS Microbiol Lett 126, 159–164.[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.2007/009233-0
Loading
/content/journal/micro/10.1099/mic.0.2007/009233-0
Loading

Data & Media loading...

Supplements

vol. , part 11, pp. 3685 - 3694

(.xls file, 311 kb) with details of the up- and downregulated genes.



EXCEL
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error