1887

Abstract

‘Endomicrobia’, a distinct and diverse group of uncultivated bacteria in the candidate phylum Termite Group I (TG-1), have been found exclusively in the gut of lower termites and wood-feeding cockroaches. In a previous study, we had demonstrated that the ‘Endomicrobia’ clones retrieved from represent intracellular symbionts of the two major gut flagellates of this termite. Here, we document that ‘Endomicrobia’ are present also in many other gut flagellates of lower termites. Phylogeny and host specificity of ‘Endomicrobia’ were investigated by cloning and sequencing of the small subunit rRNA genes of the flagellate and the symbionts, which originated from suspensions of individual flagellates isolated by micropipette. Each flagellate harboured a distinct phylogenetic lineage of ‘Endomicrobia’. The results of fluorescent hybridization with ‘Endomicrobia’-specific oligonucleotide probes corroborated that ‘Endomicrobia’ are intracellular symbionts specifically affiliated with their flagellate hosts. Interestingly, the ‘Endomicrobia’ sequences obtained from flagellates belonging to the genus formed a monophyletic group, suggesting co-speciation between symbiont and host.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.2007/009217-0
2007-10-01
2020-10-20
Loading full text...

Full text loading...

/deliver/fulltext/micro/153/10/3458.html?itemId=/content/journal/micro/10.1099/mic.0.2007/009217-0&mimeType=html&fmt=ahah

References

  1. Amann R. I., Krumholz L., Stahl D. A.. 1990; Fluorescent-oligonucleotide probing of whole cells for determinative, phylogenetic, and environmental studies in microbiology. J Bacteriol172:762–770
    [Google Scholar]
  2. Berchtold M., Chatzinotas A., Schönhuber W., Brune A., Amann R., Hahn D., König H.. 1999; Differential enumeration and in situ localization of micro-organisms in the hindgut of the lower termite Mastotermes darwiniensis by hybridization with rRNA-targeted probes. Arch Microbiol172:407–416
    [Google Scholar]
  3. Brugerolle G., Bordereau C.. 2004; The flagellates of the termite Hodotermopsis sjoestedti with special reference to Hoplonympha, Holomastigotes and Trichomonoides trypanoides n. comb. Eur J Protistol40:163–174
    [Google Scholar]
  4. Brugerolle G., Lee J. J.. 2000; Phylum Parabasalia, In An Illustrated Guide to the Protozoa , 2nd edn.vol. 2 pp1196–1250 Edited by Lee J. J., Leedale G. F., Bradbury P.. Lawrence, KS, USA: Society of Protozoologists;
    [Google Scholar]
  5. Brune A.. 2006; Symbiotic associations between termites and prokaryotes. In The Prokaryotes, 3rd edn.vol. 1 Symbiotic Associations, Biotechnology, Applied Microbiology pp439–474 Edited by Dworkin M., Falkow S., Rosenberg E., Schleifer K.-H., Stackebrandt E.. New York: Springer;
    [Google Scholar]
  6. Brune A., Stingl U.. 2005; Prokaryotic symbionts of termite gut flagellates: phylogenetic and metabolic implications of a tripartite symbiosis. In Molecular Basis of Symbiosis pp39–60 Edited by Overmann J.. Berlin: Springer;
  7. Dacks J. B., Silberman J. D., Simpson A. G. B., Moriya S., Kudo T., Ohkuma M., Redfield R. J.. 2001; Oxymonads are closely related to the excavate taxon Trimastix . Mol Biol Evol18:1034–1044
    [Google Scholar]
  8. Edwards U., Rogall T., Blöcker H., Emde M., Böttger E. C.. 1989; Isolation and direct complete nucleotide determination of entire genes. Characterization of a gene coding for 16S ribosomal RNA. Nucleic Acids Res17:7843–7853
    [Google Scholar]
  9. Gerbod D., Edgcomb V. P., Noël C., Delgado-Viscogliosi P., Viscogliosi E.. 2000; Phylogenetic position of parabasalid symbionts from the termite Calotermes flavicollis based on small subunit rRNA sequences. Int Microbiol3:165–172
    [Google Scholar]
  10. Gerbod D., Noël C., Dolan M. F., Edgcomb V. P., Kitade O., Noda S., Dufernez F., Ohkuma M., Kudo T.. other authors 2002; Molecular phylogeny of parabasalids inferred from small subunit rRNA sequences, with emphasis on the Devescovinidae and Calonymphidae (Trichomonadea. Mol Phylogenet Evol25:545–556
    [Google Scholar]
  11. Henckel T., Friedrich M., Conrad R.. 1999; Molecular analyses of the methane-oxidizing microbial community in rice field soil by targeting the genes of the 16S rRNA, particulate methane monooxygenase, and methanol dehydrogenase. Appl Environ Microbiol65:1980–1990
    [Google Scholar]
  12. Herlemann D. P. R., Geissinger O., Brune A.. 2007; The Termite Group I phylum is highly diverse and widespread in the environment. Appl Environ Microbiol in press
    [Google Scholar]
  13. Hongoh Y., Ohkuma M., Kudo T.. 2003; Molecular analysis of bacterial microbiota in the gut of the termite Reticulitermes speratus (Isoptera, Rhinotermitidae. FEMS Microbiol Ecol44:231–242
    [Google Scholar]
  14. Hongoh Y., Deevong P., Inoue T., Moriya S., Trakulnaleamsai S., Ohkuma M., Vongkaluang C., Noparatnaraporn N., Kudo T.. 2005; Intra- and interspecific comparisons of bacterial diversity and community structure support coevolution of gut microbiota and termite host. Appl Environ Microbiol71:6590–6599
    [Google Scholar]
  15. Huber T., Faulkner G., Hugenholtz P.. 2004; Bellerophon: a program to detect chimeric sequences in multiple sequence alignments. Bioinformatics20:2317–2319
    [Google Scholar]
  16. Hugenholtz P., Goebel B. M., Pace N. R.. 1998; Impact of culture-independent studies on the emerging phylogenetic view of bacterial diversity. J Bacteriol180:4765–4774
    [Google Scholar]
  17. Hungate R. E.. 1955; Mutualistic intestinal protists. In Biochemistry and Physiology of Protists vol. 2 pp159–199 Edited by Hutner S. H., Lwoff A.. New York: Academic Press;
  18. Keeling P. J., Poulsen N., McFadden G. I.. 1998; Phylogenetic diversity of parabasalian symbionts from termites, including the phylogenetic position of Pseudotrypanosoma and Trichonympha . J Eukaryot Microbiol45:643–650
    [Google Scholar]
  19. Kirby H. Jr. 1941; Organisms living on and in protozoa. In Protozoa in Biological Research pp1009–1113 Edited by Calkins G. N., Summers F. M. New York: Columbia University Press;
  20. Loy A., Horn M., Wagner M.. 2003; probeBase: an online resource for rRNA-targeted oligonucleotide probes. Nucleic Acids Res31:514–516
    [Google Scholar]
  21. Ludwig W., Strunk O., Westram R., Richter L., Meier H., Yadhukumar, Buchner A., Lai T., Steppi S.. other authors 2004; arb: a software environment for sequence data. Nucleic Acids Res32:1363–1371
    [Google Scholar]
  22. Moriya S., Dacks J. B., Takagi A., Noda S., Ohkuma M., Doolittle W. F., Kudo T.. 2003; Molecular phylogeny of three oxymonad genera: Pyrsonympha, Dinenympha and Oxymonas . J Eukaryot Microbiol50:190–197
    [Google Scholar]
  23. Noda S., Iida T., Kitade O., Nakajima H., Kudo T., Ohkuma M.. 2005; Endosymbiotic Bacteroidales bacteria of the flagellated protist Pseudotrichonympha grassii in the gut of the termite Coptotermes formosanus . Appl Environ Microbiol71:8811–8817
    [Google Scholar]
  24. Noda S., Inoue T., Hongoh Y., Nalepa C. A., Vongkaluang C., Kudo T., Ohkuma M.. 2006; Identification and characterization of ectosymbionts of distinct lineages in Bacteroidales attached to flagellated protists in the gut of termites and a wood-feeding cockroach. Environ Microbiol8:11–20
    [Google Scholar]
  25. Odelson D. A., Breznak J. A.. 1985; Nutrition and growth characteristics of Trichomitopsis termopsidis , a cellulolytic protozoan from termites. Appl Environ Microbiol49:614–621
    [Google Scholar]
  26. Ohkuma M., Kudo T.. 1996; Phylogenetic diversity of the intestinal bacterial community in the termite Reticulitermes speratus . Appl Environ Microbiol62:461–468
    [Google Scholar]
  27. Ohkuma M., Ohtoko K., Iida T., Tokura M., Moriya S., Usami R., Horikoshi K., Kudo T.. 2000; Phylogenetic identification of hypermastigotes, Pseudotrichonympha, Spirotrichonympha, Holomastigotoides , and parabasalian symbionts in the hindgut of termites. J Eukaryot Microbiol47:249–259
    [Google Scholar]
  28. Ohkuma M., Noda N. S., Iida T., Kudo T.. 2001; Abstract P.15.006. In 9th International Symposium on Microbial Ecology, Amsterdam, 2001
  29. Ohkuma M., Iida T., Ohtoko K., Yuzawa H., Noda S., Viscogliosi E., Kudo T.. 2005; Molecular phylogeny of parabasalids inferred from small subunit rRNA sequences, with emphasis on the Hypermastigea. Mol Phylogenet Evol35:646–655
    [Google Scholar]
  30. Page R. D. M., Charleston M.. 1998; Trees within trees: phylogeny and historical associations. Trends Ecol Evol13:356–359
    [Google Scholar]
  31. Radek R., Hausmann K., Breunig A.. 1992; Ectobiotic and endocytobiotic bacteria associated with the termite flagellate Joenia annectens . Acta Protozool31:93–107
    [Google Scholar]
  32. Stingl U., Brune A.. 2003; Phylogenetic diversity and whole-cell hybridization of oxymonad flagellates from the hindgut of the wood-feeding lower termite Reticulitermes flavipes . Protist154:147–155
    [Google Scholar]
  33. Stingl U., Maass A., Radek R., Brune A.. 2004; Symbionts of the gut flagellate Staurojoenina sp. from Neotermes cubanus represent a novel, termite-associated lineage of Bacteroidales : description of ‘ Candidatus Vestibaculum illigatum'. Microbiology150:2229–2235
    [Google Scholar]
  34. Stingl U., Radek R., Yang H., Brune A.. 2005; ‘Endomicrobia': cytoplasmic symbionts of termite gut protozoa form a separate phylum of prokaryotes. Appl Environ Microbiol71:1473–1479
    [Google Scholar]
  35. Tamm S. L.. 1999; Locomotory waves of Koruga and Deltotrichonympha : flagella wag the cell. Cell Motil Cytoskeleton43:145–158
    [Google Scholar]
  36. Trager W.. 1934; The cultivation of a cellulose-digesting flagellate, Trichomonas termopsidis , and of certain other termite protozoa. Biol Bull66:182–190
    [Google Scholar]
  37. Wallner G., Amann R., Beisker W.. 1993; Optimizing fluorescent in situ hybridization with rRNA-targeted oligonucleotide probes for flow cytometric identification of microorganisms. Cytometry14:136–143
    [Google Scholar]
  38. Weisburg W. G., Barns S. M., Pelletier D. A., Lane D. J.. 1991; 16S ribosomal DNA amplification for phylogenetic study. J Bacteriol173:697–703
    [Google Scholar]
  39. Yamin M. A.. 1979; Flagellates of the orders Trichomonadida Kirby, Oxymonadida Grassé, and Hypermastigida Grassi & Foà reported from lower termites (Isoptera families Mastotermitidae, Kalotermitidae, Hodotermitidae, Termopsidae, Rhinotermitidae, and Serritermitidae) and from the wood-feeding roach Cryptocercus (Dictyoptera: Cryptocercidae. Sociobiology4:3–119
    [Google Scholar]
  40. Yamin M. A.. 1980; Cellulose metabolism by the termite flagellate Trichomitopsis termopsidis . Appl Environ Microbiol39:859–863
    [Google Scholar]
  41. Yamin M. A.. 1981; Cellulose metabolism by the flagellate Trichonympha from a termite is independent of endosymbiotic bacteria. Science211:58–59
    [Google Scholar]
  42. Yang H., Schmitt-Wagner D., Stingl U., Brune A.. 2005; Niche heterogeneity determines bacterial community structure in the termite gut ( Reticulitermes santonensis . Environ Microbiol7:916–932
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.2007/009217-0
Loading
/content/journal/micro/10.1099/mic.0.2007/009217-0
Loading

Data & Media loading...

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error