1887

Abstract

Enterotoxigenic (ETEC) causes enterotoxin-induced diarrhoea and significant mortality. The molecular mechanisms underlying how the heat-labile enterotoxin (LT) is secreted during infection are poorly understood. ETEC produce outer-membrane vesicles (OMVs) containing LT that are endocytosed into host cells. Although OMV production and protein content may be a regulated component of ETEC pathogenesis, how LT loading into OMVs is regulated is unknown. The LeoA protein plays a role in secreting LT from the bacterial periplasm. To begin to understand the function of LeoA and its role in ETEC H10407 pathogenesis, a site-directed mutant lacking the putative GTP-binding domain was constructed. The ability of wild-type and mutant LeoA to hydrolyse GTP was quantified. This domain was found to be responsible for GTP binding; it is important to LeoA's function in LT secretion, and may play a modest role in the formation and protein content of OMVs. Deletion of reduced the abundance of OmpX in outer-membrane protein preparations and of LT in OMVs. Immunoprecipitation experiments revealed that LeoA interacts directly with OmpA, but that the GTP-binding domain is non-essential for this interaction. Deletion of rendered ETEC H10407 non-motile, through apparent periplasmic accumulation of FliC.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.2007/009084-0
2007-11-01
2024-12-07
Loading full text...

Full text loading...

/deliver/fulltext/micro/153/11/3776.html?itemId=/content/journal/micro/10.1099/mic.0.2007/009084-0&mimeType=html&fmt=ahah

References

  1. Abendroth J., Murphy P., Sandkvist M., Bagdasarian M., Hol W. G. 2005; The X-ray structure of the type II secretion system complex formed by the N-terminal domain of EpsE and the cytoplasmic domain of EpsL of Vibrio cholerae. J Mol Biol 348:845–855
    [Google Scholar]
  2. Achtman M., Mercer A., Kusecek B., Pohl A., Heuzenroeder M., Aaronson W., Sutton A., Silver R. P. 1983; Six widespread bacterial clones among Escherichia coli K1 isolates. Infect Immun 39:315–335
    [Google Scholar]
  3. Aldridge P. D., Karlinsey J. E., Aldridge C., Birchall C., Thompson D., Yagasaki J., Hughes K. T. 2006; The flagellar-specific transcription factor, sigma28, is the type III secretion chaperone for the flagellar-specific anti-sigma28 factor FlgM. Genes Dev 20:2315–2326
    [Google Scholar]
  4. Berberov E. M., Zhou Y., Francis D. H., Scott M. A., Kachman S. D., Moxley R. A. 2004; Relative importance of heat-labile enterotoxin in the causation of severe diarrheal disease in the gnotobiotic piglet model by a strain of enterotoxigenic Escherichia coli that produces multiple enterotoxins. Infect Immun 72:3914–3924
    [Google Scholar]
  5. Camberg J. L., Sandkvist M. 2005; Molecular analysis of the Vibrio cholerae type II secretion ATPase EpsE. J Bacteriol 187:249–256
    [Google Scholar]
  6. Cheney C. P., Boedeker E. C. 1983; Adherence of an enterotoxigenic Escherichia coli strain, serotype O78 : H11, to purified human intestinal brush borders. Infect Immun 39:1280–1284
    [Google Scholar]
  7. de Kort G., Bolton A., Martin G., Stephen J., van de Klundert J. A. 1994; Invasion of rabbit ileal tissue by Enterobacter cloacae varies with the concentration of OmpX in the outer membrane. Infect Immun 62:4722–4726
    [Google Scholar]
  8. Deng W., Li Y., Hardwidge P. R., Frey E. A., Pfeutzner R. A., Lee S., Gruenheid S., Strynakda N. C., Puente J. L., Finlay B. B. 2005; Regulation of type III secretion hierarchy of translocators and effectors in attaching and effacing bacterial pathogens. Infect Immun 73:2135–2146
    [Google Scholar]
  9. DuPont H. L., Formal S. B., Hornick R. B., Snyder M. J., Libonati J. P., Sheahan D. G., LaBrec E. H., Kalas J. P. 1971; Pathogenesis of Escherichia coli diarrhea. N Engl J Med 285:1–9
    [Google Scholar]
  10. Erickson A. K., Willgohs J. A., McFarland S. Y., Benfield D. A., Francis D. H. 1992; Identification of two porcine brush border glycoproteins that bind the K88ac adhesin of Escherichia coli and correlation of these glycoproteins with the adhesive phenotype. Infect Immun 60:983–988
    [Google Scholar]
  11. Fiocca R., Necchi V., Sommi P., Ricci V., Telford J., Cover T. L., Solcia E. 1999; Release of Helicobacter pylori vacuolating cytotoxin by both a specific secretion pathway and budding of outer membrane vesicles. Uptake of released toxin and vesicles by gastric epithelium. J Pathol 188:220–226
    [Google Scholar]
  12. Fleckenstein J. M., Lindler L. E., Elsinghorst E. A., Dale J. B. 2000; Identification of a gene within a pathogenicity island of enterotoxigenic Escherichia coli H10407 required for maximal secretion of the heat-labile enterotoxin. Infect Immun 68:2766–2774
    [Google Scholar]
  13. Giron J. A., Torres A. G., Freer E., Kaper J. B. 2002; The flagella of enteropathogenic Escherichia coli mediate adherence to epithelial cells. Mol Microbiol 44:361–379
    [Google Scholar]
  14. Gomez-Gomez J. M., Manfredi C., Alonso J. C., Blazquez J. 2007; A novel role for RecA under non-stress: promotion of swarming motility in Escherichia coli K-12. BMC Biol 5:14
    [Google Scholar]
  15. Hartzell P. L. 1997; Complementation of sporulation and motility defects in a prokaryote by a eukaryotic GTPase. Proc Natl Acad Sci U S A 94:9881–9886
    [Google Scholar]
  16. Horstman A. L., Kuehn M. J. 2000; Enterotoxigenic Escherichia coli secretes active heat-labile enterotoxin via outer membrane vesicles. J Biol Chem 275:12489–12496
    [Google Scholar]
  17. Horstman A. L., Kuehn M. J. 2002; Bacterial surface association of heat-labile enterotoxin through lipopolysaccharide after secretion via the general secretory pathway. J Biol Chem 277:32538–32545
    [Google Scholar]
  18. Ilver D., Barone S., Mercati D., Lupetti P., Telford J. L. 2004; Helicobacter pylori toxin VacA is transferred to host cells via a novel contact-dependent mechanism. Cell Microbiol 6:167–174
    [Google Scholar]
  19. Inoue K., Alsina J., Chen J., Inouye M. 2003; Suppression of defective ribosome assembly in a rbfA deletion mutant by overexpression of Era, an essential GTPase in Escherichia coli. Mol Microbiol 48:1005–1016
    [Google Scholar]
  20. Jekely G. 2003; Small GTPases and the evolution of the eukaryotic cell. Bioessays 25:1129–1138
    [Google Scholar]
  21. Kadurugamuwa J. L., Beveridge T. J. 1997; Natural release of virulence factors in membrane vesicles by Pseudomonas aeruginosa and the effect of aminoglycoside antibiotics on their release. J Antimicrob Chemother 40:615–621
    [Google Scholar]
  22. Kesty N. C., Mason K. M., Reedy M., Miller S. E., Kuehn M. J. 2004; Enterotoxigenic Escherichia coli vesicles target toxin delivery into mammalian cells. EMBO J 23:4538–4549
    [Google Scholar]
  23. Koebnik R., Locher K. P., Van Gelder P. 2000; Structure and function of bacterial outer membrane proteins: barrels in a nutshell. Mol Microbiol 37:239–253
    [Google Scholar]
  24. Kolling G. L., Matthews K. R. 1999; Export of virulence genes and Shiga toxin by membrane vesicles of Escherichia coli O157 : H7. Appl Environ Microbiol 65:1843–1848
    [Google Scholar]
  25. McBroom A. J., Kuehn M. J. 2007; Release of outer membrane vesicles by Gram-negative bacteria is a novel envelope stress response. Mol Microbiol 63:545–558
    [Google Scholar]
  26. Miller V. L., Beer K. B., Heusipp G., Young B. M., Wachtel M. R. 2001; Identification of regions of Ail required for the invasion and serum resistance phenotypes. Mol Microbiol 41:1053–1062
    [Google Scholar]
  27. Miller E., Antonny B., Hamamoto S., Schekman R. 2002; Cargo selection into COPII vesicles is driven by the Sec24p subunit. EMBO J 21:6105–6113
    [Google Scholar]
  28. Nataro J. P., Kaper J. B. 1998; Diarrheagenic Escherichia coli. Clin Microbiol Rev 11:142–201
    [Google Scholar]
  29. Parthasarathy G., Yao Y., Kim K. S. 2007; Flagella promote Escherichia coli K1 association with and invasion of human brain microvascular endothelial cells (HBMEC. Infect Immun 75:2937–2945
    [Google Scholar]
  30. Prasadarao N. V., Wass C. A., Weiser J. N., Stins M. F., Huang S. H., Kim K. S. 1996; Outer membrane protein A of Escherichia coli contributes to invasion of brain microvascular endothelial cells. Infect Immun 64:146–153
    [Google Scholar]
  31. Rowe B., Taylor J., Bettelheim K. A. 1970; An investigation of traveller's diarrhoea. Lancet 1:1–5
    [Google Scholar]
  32. Spangler B. D. 1992; Structure and function of cholera toxin and the related Escherichia coli heat-labile enterotoxin. Microbiol Rev 56:622–647
    [Google Scholar]
  33. Tauschek M., Gorrell R. J., Strugnell R. A., Robins-Browne R. M. 2002; Identification of a protein secretory pathway for the secretion of heat-labile enterotoxin by an enterotoxigenic strain of Escherichia coli. Proc Natl Acad Sci U S A 99:7066–7071
    [Google Scholar]
  34. Torres A. G., Kaper J. B. 2003; Multiple elements controlling adherence of enterohemorrhagic Escherichia coli O157 : H7 to HeLa cells. Infect Immun 71:4985–4995
    [Google Scholar]
  35. Torres A. G., Li Y., Tutt C. B., Xin L., Eaves-Pyles T., Soong L. 2006; Outer membrane protein A of Escherichia coli O157 : H7 stimulates dendritic cell activation. Infect Immun 74:2676–2685
    [Google Scholar]
  36. Turner S. M., Chaudhuri R. R., Jiang Z. D., DuPont H., Gyles C., Penn C. W., Pallen M. J., Henderson I. R. 2006; Phylogenetic comparisons reveal multiple acquisitions of the toxin genes by enterotoxigenic Escherichia coli strains of different evolutionary lineages. J Clin Microbiol 44:4528–4536
    [Google Scholar]
  37. Wai S. N., Takade A., Amako K. 1995; The release of outer membrane vesicles from the strains of enterotoxigenic Escherichia coli. Microbiol Immunol 39:451–456
    [Google Scholar]
  38. Warrens A. N., Jones M. D., Lechler R. I. 1997; Splicing by overlap extension by PCR using asymmetric amplification: an improved technique for the generation of hybrid proteins of immunological interest. Gene 186:29–35
    [Google Scholar]
  39. Wright K. J., Seed P. C., Hultgren S. J. 2005; Uropathogenic Escherichia coli flagella aid in efficient urinary tract colonization. Infect Immun 73:7657–7668
    [Google Scholar]
  40. Zhuang X., Xu Y., Chong K., Lan L., Xue Y., Xu Z. 2005; OsAGAP, an ARF-GAP from rice, regulates root development mediated by auxin in Arabidopsis. Plant Cell Environ 28:147–156
    [Google Scholar]
/content/journal/micro/10.1099/mic.0.2007/009084-0
Loading
/content/journal/micro/10.1099/mic.0.2007/009084-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error