1887

Abstract

The development of complex multispecies communities such as biofilms is controlled by interbacterial communication systems. We have previously reported an intergeneric communication between two oral bacteria, and , that results in inhibition of expression. Here, we demonstrate that a surface protein, arginine deiminase (ArcA), of serves as a signal that initiates intergeneric communication. An ArcA-deficient mutant of is unable to communicate with . Furthermore, arginase activity is not essential for the communication, and ArcA retains the ability to repress expression of in the presence of arginine deiminase inhibitors. These results present a novel mechanism by which intergeneric communication in dental biofilms is accomplished.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.2007/009050-0
2007-10-01
2019-10-15
Loading full text...

Full text loading...

/deliver/fulltext/micro/153/10/3228.html?itemId=/content/journal/micro/10.1099/mic.0.2007/009050-0&mimeType=html&fmt=ahah

References

  1. Aas, J. A., Paster, B. J., Stokes, L. N., Olsen, I. & Dewhirst, F. E. ( 2005; ). Defining the normal bacterial flora of the oral cavity. J Clin Microbiol 43, 5721–5732.[CrossRef]
    [Google Scholar]
  2. Amano, A., Fujiwara, T., Nagata, H., Kuboniwa, M., Sharma, A., Sojar, H. T., Genco, R. J., Hamada, S. & Shizukuishi, S. ( 1997; ). Prophyromonas gingivalis fimbriae mediate coaggregation with Streptococcus oralis through specific domains. J Dent Res 76, 852–857.[CrossRef]
    [Google Scholar]
  3. Aoki, S. K., Pamma, R., Hernday, A. D., Bickham, J. E., Braaten, B. A. & Low, D. A. ( 2005; ). Contact-dependent inhibition of growth in Escherichia coli. Science 309, 1245–1248.[CrossRef]
    [Google Scholar]
  4. Aslanidis, C. & de Jong, P. J. ( 1990; ). Ligation-independent cloning of PCR products (LIC-PCR). Nucleic Acids Res 18, 6069–6074.[CrossRef]
    [Google Scholar]
  5. Burne, R. A. & Marquis, R. E. ( 2000; ). Alkali production by oral bacteria and protection against dental caries. FEMS Microbiol Lett 193, 1–6.[CrossRef]
    [Google Scholar]
  6. Caldelari, I., Loeliger, B., Langen, H., Glauser, M. P. & Moreillon, P. ( 2000; ). Deregulation of the arginine deiminase (arc) operon in penicillin-tolerant mutants of Streptococcus gordonii. Antimicrob Agents Chemother 44, 2802–2810.[CrossRef]
    [Google Scholar]
  7. Chung, W. O., Park, Y., Lamont, R. J., McNab, R., Barbieri, B. & Demuth, D. R. ( 2001; ). Signaling system in Porphyromonas gingivalis based on a LuxS protein. J Bacteriol 183, 3903–3909.[CrossRef]
    [Google Scholar]
  8. Crow, V. L. & Thomas, T. D. ( 1982; ). Arginine metabolism in lactic streptococci. J Bacteriol 150, 1024–1032.
    [Google Scholar]
  9. Dong, Y., Chen, Y. Y., Snyder, J. A. & Burne, R. A. ( 2002; ). Isolation and molecular analysis of the gene cluster for the arginine deiminase system from Streptococcus gordonii DL1. Appl Environ Microbiol 68, 5549–5553.[CrossRef]
    [Google Scholar]
  10. Fletcher, H. M., Schenkein, H. A., Morgan, R. M., Bailey, K. A., Berry, C. R. & Macrina, F. L. ( 1995; ). Virulence of a Porphyromonas gingivalis W83 mutant defective in the prtH gene. Infect Immun 63, 1521–1528.
    [Google Scholar]
  11. Gibbons, R. J., Hay, D. I. & Schlesinger, D. H. ( 1991; ). Delineation of a segment of adsorbed salivary acidic proline-rich proteins which promotes adhesion of Streptococcus gordonii to apatitic surfaces. Infect Immun 59, 2948–2954.
    [Google Scholar]
  12. Gong, H., Zolzer, F., von Recklinghausen, G., Havers, W. & Schweigerer, L. ( 2000; ). Arginine deiminase inhibits proliferation of human leukemia cells more potently than asparaginase by inducing cell cycle arrest and apoptosis. Leukemia 14, 826–829.[CrossRef]
    [Google Scholar]
  13. Gotoh, T. & Mori, M. ( 1999; ). Arginase II downregulates nitric oxide (NO) production and prevents NO-mediated apoptosis in murine macrophage-derived RAW 264.7 cells. J Cell Biol 144, 427–434.[CrossRef]
    [Google Scholar]
  14. Goulbourne, P. A. & Ellen, R. P. ( 1991; ). Evidence that Porphyromonas (Bacteroides) gingivalis fimbriae function in adhesion to Actinomyces viscosus. J Bacteriol 173, 5266–5274.
    [Google Scholar]
  15. Hashimoto, M., Ogawa, S., Asai, Y., Takai, Y. & Ogawa, T. ( 2003; ). Binding of Porphyromonas gingivalis fimbriae to Treponema denticola dentilisin. FEMS Microbiol Lett 226, 267–271.[CrossRef]
    [Google Scholar]
  16. James, D., Shao, H., Lamont, R. J. & Demuth, D. R. ( 2006; ). The Actinobacillus actinomycetemcomitans ribose binding protein RbsB interacts with cognate and heterologous autoinducer 2 signals. Infect Immun 74, 4021–4029.[CrossRef]
    [Google Scholar]
  17. Jeffery, C. J. ( 1999; ). Moonlighting proteins. Trends Biochem Sci 24, 8–11.[CrossRef]
    [Google Scholar]
  18. Kang, S. W., Kang, H., Park, I. S., Choi, S. H., Shin, K. H., Chun, Y. S., Chun, B. G. & Min, B. H. ( 2000; ). Cytoprotective effect of arginine deiminase on taxol-induced apoptosis in DU145 human prostate cancer cells. Mol Cells 10, 331–337.
    [Google Scholar]
  19. Kolenbrander, P. E., Andersen, R. N., Blehert, D. S., Egland, P. G., Foster, J. S. & Palmer, R. J., Jr ( 2002; ). Communication among oral bacteria. Microbiol Mol Biol Rev 66, 486–505.[CrossRef]
    [Google Scholar]
  20. Kolenbrander, P. E., Palmer, R. J., Rickard, A. H., Jakubovics, N. S., Chalmers, N. I. & Diaz, P. I. ( 2006; ). Bacterial interactions and successions during plaque development. Periodontol 2000 42, 47–79.[CrossRef]
    [Google Scholar]
  21. Kuramitsu, H. K. & Wang, B. Y. ( 2006; ). Virulence properties of cariogenic bacteria. BMC Oral Health 6 (Suppl. 1), S11 [CrossRef]
    [Google Scholar]
  22. Lamont, R. J. & Jenkinson, H. F. ( 1998; ). Life below the gum line: pathogenic mechanisms of Porphyromonas gingivalis. Microbiol Mol Biol Rev 62, 1244–1263.
    [Google Scholar]
  23. Lamont, R. J., Bevan, C. A., Gil, S., Persson, R. E. & Rosan, B. ( 1993; ). Involvement of Porphyromonas gingivalis fimbriae in adherence to Streptococcus gordonii. Oral Microbiol Immunol 8, 272–276.[CrossRef]
    [Google Scholar]
  24. Lee, S. W., Hillman, J. D. & Progulske-Fox, A. ( 1996; ). The hemagglutinin genes hagB and hagC of Porphyromonas gingivalis are transcribed in vivo as shown by use of a new expression vector. Infect Immun 64, 4802–4810.
    [Google Scholar]
  25. Li, T., Bratt, P., Jonsson, A. P., Ryberg, M., Johansson, I., Griffiths, W. J., Bergman, T. & Stromberg, N. ( 2000; ). Possible release of an ArgGlyArgProGln pentapeptide with innate immunity properties from acidic proline-rich proteins by proteolytic activity in commensal streptococcus and actinomyces species. Infect Immun 68, 5425–5429.[CrossRef]
    [Google Scholar]
  26. Li, J., Helmerhorst, E. J., Leone, C. W., Troxler, R. F., Yaskell, T., Haffajee, A. D., Socransky, S. S. & Oppenheim, F. G. ( 2004; ). Identification of early microbial colonizers in human dental biofilm. J Appl Microbiol 97, 1311–1318.[CrossRef]
    [Google Scholar]
  27. McNab, R., Ford, S. K., El-Sabaeny, A., Barbieri, B., Cook, G. S. & Lamont, R. J. ( 2003; ). LuxS-based signaling in Streptococcus gordonii: autoinducer 2 controls carbohydrate metabolism and biofilm formation with Porphyromonas gingivalis. J Bacteriol 185, 274–284.[CrossRef]
    [Google Scholar]
  28. Merritt, J., Kreth, J., Shi, W. & Qi, F. ( 2005; ). LuxS controls bacteriocin production in Streptococcus mutans through a novel regulatory component. Mol Microbiol 57, 960–969.[CrossRef]
    [Google Scholar]
  29. Nelson, D., Goldstein, J. M., Boatright, K., Harty, D. W., Cook, S. L., Hickman, P. J., Potempa, J., Travis, J. & Mayo, J. A. ( 2001; ). pH-regulated secretion of a glyceraldehyde-3-phosphate dehydrogenase from Streptococcus gordonii FSS2: purification, characterization, and cloning of the gene encoding this enzyme. J Dent Res 80, 371–377.[CrossRef]
    [Google Scholar]
  30. Park, I. S., Kang, S. W., Shin, Y. J., Chae, K. Y., Park, M. O., Kim, M. Y., Wheatley, D. N. & Min, B. H. ( 2003; ). Arginine deiminase: a potential inhibitor of angiogenesis and tumour growth. Br J Cancer 89, 907–914.[CrossRef]
    [Google Scholar]
  31. Rickard, A. H., Palmer, R. J., Jr, Blehert, D. S., Campagna, S. R., Semmelhack, M. F., Egland, P. G., Bassler, B. L. & Kolenbrander, P. E. ( 2006; ). Autoinducer 2: a concentration-dependent signal for mutualistic bacterial biofilm growth. Mol Microbiol 60, 1446–1456.[CrossRef]
    [Google Scholar]
  32. Scannapieco, F. A., Torres, G. I. & Levine, M. J. ( 1995; ). Salivary amylase promotes adhesion of oral streptococci to hydroxyapatite. J Dent Res 74, 1360–1366.[CrossRef]
    [Google Scholar]
  33. Tao, L., LeBlanc, D. J. & Ferretti, J. J. ( 1992; ). Novel streptococcal-integration shuttle vectors for gene cloning and inactivation. Gene 120, 105–110.[CrossRef]
    [Google Scholar]
  34. Thirkill, C. E., Song, D. Y. & Gregerson, D. S. ( 1983; ). Application of monoclonal antibodies to detect intraocular mycoplasma antigens in Mycoplasma arthritidis-infected Sprague-Dawley rats. Infect Immun 40, 389–397.
    [Google Scholar]
  35. Tobian, J. A., Cline, M. L. & Macrina, F. L. ( 1984; ). Characterization and expression of a cloned tetracycline resistance determinant from the chromosome of Streptococcus mutans. J Bacteriol 160, 556–563.
    [Google Scholar]
  36. Ulisse, S., Gionchetti, P., D'Alo, S., Russo, F. P., Pesce, I., Ricci, G., Rizzello, F., Helwig, U., Cifone, M. G. & other authors ( 2001; ). Expression of cytokines, inducible nitric oxide synthase, and matrix metalloproteinases in pouchitis: effects of probiotic treatment. Am J Gastroenterol 96, 2691–2699.[CrossRef]
    [Google Scholar]
  37. Wang, B. Y. & Kuramitsu, H. K. ( 2005; ). Interactions between oral bacteria: inhibition of Streptococcus mutans bacteriocin production by Streptococcus gordonii. Appl Environ Microbiol 71, 354–362.[CrossRef]
    [Google Scholar]
  38. Xie, H., Cai, S. & Lamont, R. J. ( 1997; ). Environmental regulation of fimbrial gene expression in Porphyromonas gingivalis. Infect Immun 65, 2265–2271.
    [Google Scholar]
  39. Xie, H., Cook, G. S., Costerton, J. W., Bruce, G., Rose, T. M. & Lamont, R. J. ( 2000; ). Intergeneric communication in dental plaque biofilms. J Bacteriol 182, 7067–7069.[CrossRef]
    [Google Scholar]
  40. Xie, H., Kozlova, N. & Lamont, R. J. ( 2004; ). Porphyromonas gingivalis genes involved in fimA regulation. Infect Immun 72, 651–658.[CrossRef]
    [Google Scholar]
  41. Ximenez-Fyvie, L. A., Haffajee, A. D. & Socransky, S. S. ( 2000; ). Microbial composition of supra- and subgingival plaque in subjects with adult periodontitis. J Clin Periodontol 27, 722–732.[CrossRef]
    [Google Scholar]
  42. Zeng, L., Dong, Y. & Burne, R. A. ( 2006; ). Characterization of cis-acting sites controlling arginine deiminase gene expression in Streptococcus gordonii. J Bacteriol 188, 941–949.[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.2007/009050-0
Loading
/content/journal/micro/10.1099/mic.0.2007/009050-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error