1887

Abstract

In aquatic environments, biofilms constitute an ecological niche where persists as sessile cells. However, very little information on the sessile mode of life of is currently available. We report here the development of a model biofilm of strain Lens and the first transcriptome analysis of biofilm cells. Global gene expression analysis of sessile cells as compared to two distinct populations of planktonic cells revealed that a substantial proportion of genes is differentially expressed, as 2.3 % of the 2932 predicted genes exhibited at least a twofold change in gene expression. Comparison with previous results defining the gene expression profile of replicative- and transmissive-phase suggests that sessile cells resemble bacteria in the replicative phase. Further analysis of the most strongly regulated genes in sessile cells identified two induced gene clusters. One contains genes that encode alkyl hydroperoxide reductases known to act against oxidative stress. The second encodes proteins similar to PvcA and PvcB that are involved in siderophore biosynthesis in . Since iron has been reported to modify biofilm formation in other species, we further focused on iron control of gene expression and biofilm formation. Among the genes showing the greatest differences in expression between planktonic cells and biofilm, only and were regulated by iron concentration. A Δ mutant showed no changes in biofilm formation compared to the wild-type, suggesting that the product is not mandatory for biofilm formation. However, biofilm formation by wild-type and a Δ strain was clearly inhibited in iron-rich conditions.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.2007/008698-0
2008-01-01
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/micro/154/1/30.html?itemId=/content/journal/micro/10.1099/mic.0.2007/008698-0&mimeType=html&fmt=ahah

References

  1. Abu Kwaik Y., Gao L. Y., Stone B. J., Venkataraman C., Harb O. S. 1998; Invasion of protozoa by Legionella pneumophila and its role in bacterial ecology and pathogenesis. Appl Environ Microbiol 64:3127–3133
    [Google Scholar]
  2. Allard K. A., Viswanathan V. K., Cianciotto N. P. 2006; lbtA and lbtB are required for production of the Legionella pneumophila siderophore legiobactin. J Bacteriol 188:1351–1363
    [Google Scholar]
  3. Andrews S. C., Robinson A. K., Rodriguez-Quinones F. 2003; Bacterial iron homeostasis. FEMS Microbiol Rev 27:215–237
    [Google Scholar]
  4. Baillon M. L., van Vliet A. H., Ketley J. M., Constantinidou C., Penn C. W. 1999; An iron-regulated alkyl hydroperoxide reductase (AhpC) confers aerotolerance and oxidative stress resistance to the microaerophilic pathogen Campylobacter jejuni . J Bacteriol 181:4798–4804
    [Google Scholar]
  5. Banin E., Vasil M. L., Greenberg E. P. 2005; Iron and Pseudomonas aeruginosa biofilm formation. Proc Natl Acad Sci U S A 102:11076–11081
    [Google Scholar]
  6. Beloin C., Valle J., Latour-Lambert P., Faure P., Kzreminski M., Balestrino D., Haagensen J. A., Molin S., Prensier G. other authors 2004; Global impact of mature biofilm lifestyle on Escherichia coli K-12 gene expression. Mol Microbiol 51:659–674
    [Google Scholar]
  7. Brüggemann H., Hagman H., Jules M., Sismeiro O., Dillies M. A., Gouyette C., Kunst F., Steinert M., Heuner K. other authors 2006; Virulence strategies for infecting phagocytes deduced from the in vivo transcriptional program of Legionella pneumophila . Cell Microbiol 8:1228–1240
    [Google Scholar]
  8. Cazalet C., Rusniok C., Bruggemann H., Zidane N., Magnier A., Ma L., Tichit M., Jarraud S., Bouchier C. other authors 2004; Evidence in the Legionella pneumophila genome for exploitation of host cell functions and high genome plasticity. Nat Genet 36:1165–1173
    [Google Scholar]
  9. Chien M., Morozova I., Shi S., Sheng H., Chen J., Gomez S. M., Asamani G., Hill K., Nuara J. other authors 2004; The genomic sequence of the accidental pathogen Legionella pneumophila . Science 305:1966–1968
    [Google Scholar]
  10. Cianciotto N. P. 2007; Iron acquisition by Legionella pneumophila . Biometals 20:323–331
    [Google Scholar]
  11. De Buck E., Maes L., Meyen E., Van Mellaert L., Geukens N., Anne J., Lammertyn E. 2005; Legionella pneumophila Philadelphia-1 tatB and tatC affect intracellular replication and biofilm formation. Biochem Biophys Res Commun 331:1413–1420
    [Google Scholar]
  12. Declerck P., Behets J., van Hoef V., Ollevier F. 2007; Detection of Legionella spp. and some of their amoeba hosts in floating biofilms from anthropogenic and natural aquatic environments. Water Res 41:3159–3167
    [Google Scholar]
  13. Delmar P., Robin S., Daudin J. J. 2005; VarMixt: efficient variance modelling for the differential analysis of replicated gene expression data. Bioinformatics 21:502–508
    [Google Scholar]
  14. Domka J., Lee J., Bansal T., Wood T. K. 2007; Temporal gene-expression in Escherichia coli K-12 biofilms. Environ Microbiol 9:332–346
    [Google Scholar]
  15. Donlan R. M., Costerton J. W. 2002; Biofilms: survival mechanisms of clinically relevant microorganisms. Clin Microbiol Rev 15:167–193
    [Google Scholar]
  16. Fettes P. S., Forsbach-Birk V., Lynch D., Marre R. 2001; Overexpresssion of a Legionella pneumophila homologue of the E. coli regulator csrA affects cell size, flagellation, and pigmentation. Int J Med Microbiol 291:353–360
    [Google Scholar]
  17. Grifantini R., Frigimelica E., Delany I., Bartolini E., Giovinazzi S., Balloni S., Agarwal S., Galli G., Genco C. other authors 2004; Characterization of a novel Neisseria meningitidis Fur and iron-regulated operon required for protection from oxidative stress: utility of DNA microarray in the assignment of the biological role of hypothetical genes. Mol Microbiol 54:962–979
    [Google Scholar]
  18. Hall-Stoodley L., Costerton J. W., Stoodley P. 2004; Bacterial biofilms: from the natural environment to infectious diseases. Nat Rev Microbiol 2:95–108
    [Google Scholar]
  19. Heuner K., Brand B. C., Hacker J. 1999; The expression of the flagellum of Legionella pneumophila is modulated by different environmental factors. FEMS Microbiol Lett 175:69–77
    [Google Scholar]
  20. Johnson M., Cockayne A., Williams P. H., Morrissey J. A. 2005; Iron-responsive regulation of biofilm formation in Staphylococcus aureus involves Fur-dependent and Fur-independent mechanisms. J Bacteriol 187:8211–8215
    [Google Scholar]
  21. Kim B. R., Anderson J. E., Mueller S. A., Gaines W. A., Kendall A. M. 2002; Literature review – efficacy of various disinfectants against Legionella in water systems. Water Res 36:4433–4444
    [Google Scholar]
  22. Kuiper M. W., Wullings B. A., Akkermans A. D., Beumer R. R., van der Kooij D. 2004; Intracellular proliferation of Legionella pneumophila in Hartmannella vermiformis in aquatic biofilms grown on plasticized polyvinyl chloride. Appl Environ Microbiol 70:6826–6833
    [Google Scholar]
  23. LeBlanc J. J., Davidson R. J., Hoffman P. S. 2006; Compensatory functions of two alkyl hydroperoxide reductases in the oxidative defense system of Legionella pneumophila . J Bacteriol 188:6235–6244
    [Google Scholar]
  24. Livak K. J., Schmittgen T. D. 2001; Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCT method. Methods 25:402–408
    [Google Scholar]
  25. Mampel J., Spirig T., Weber S. S., Haagensen J. A., Molin S., Hilbi H. 2006; Planktonic replication is essential for biofilm formation by Legionella pneumophila in a complex medium under static and dynamic flow conditions. Appl Environ Microbiol 72:2885–2895
    [Google Scholar]
  26. Milohanic E., Glaser P., Coppee J. Y., Frangeul L., Vega Y., Vazquez-Boland J. A., Kunst F., Cossart P., Buchrieser C. 2003; Transcriptome analysis of Listeria monocytogenes identifies three groups of genes differently regulated by PrfA. Mol Microbiol 47:1613–1625
    [Google Scholar]
  27. Molofsky A. B., Swanson M. S. 2003; Legionella pneumophila CsrA is a pivotal repressor of transmission traits and activator of replication. Mol Microbiol 50:445–461
    [Google Scholar]
  28. Molofsky A. B., Swanson M. S. 2004; Differentiate to thrive: lessons from the Legionella pneumophila life cycle. Mol Microbiol 53:29–40
    [Google Scholar]
  29. Murga R., Forster T. S., Brown E., Pruckler J. M., Fields B. S., Donlan R. M. 2001; Role of biofilms in the survival of Legionella pneumophila in a model potable-water system. Microbiology 147:3121–3126
    [Google Scholar]
  30. Musk D. J., Banko D. A., Hergenrother P. J. 2005; Iron salts perturb biofilm formation and disrupt existing biofilms of Pseudomonas aeruginosa . Chem Biol 12:789–796
    [Google Scholar]
  31. O'Toole G. A., Kolter R. 1998; Flagellar and twitching motility are necessary for Pseudomonas aeruginosa biofilm development. Mol Microbiol 30:295–304
    [Google Scholar]
  32. Pham T. H., Webb J. S., Rehm B. H. 2004; The role of polyhydroxyalkanoate biosynthesis by Pseudomonas aeruginosa in rhamnolipid and alginate production as well as stress tolerance and biofilm formation. Microbiology 150:3405–3413
    [Google Scholar]
  33. Piao Z., Sze C. C., Barysheva O., Iida K., Yoshida S. 2006; Temperature-regulated formation of mycelial mat-like biofilms by Legionella pneumophila . Appl Environ Microbiol 72:1613–1622
    [Google Scholar]
  34. Pratt L. A., Kolter R. 1998; Genetic analysis of Escherichia coli biofilm formation: roles of flagella, motility, chemotaxis and type I pili. Mol Microbiol 30:285–293
    [Google Scholar]
  35. Reiner A., Yekutieli D., Benjamini Y. 2003; Identifying differentially expressed genes using false discovery rate controlling procedures. Bioinformatics 19:368–375
    [Google Scholar]
  36. Robey M., Cianciotto N. P. 2002; Legionella pneumophila feoAB promotes ferrous iron uptake and intracellular infection. Infect Immun 70:5659–5669
    [Google Scholar]
  37. Rocha E. R., Smith C. J. 1999; Role of the alkyl hydroperoxide reductase ( ahpCF ) gene in oxidative stress defense of the obligate anaerobe Bacteroides fragilis . J Bacteriol 181:5701–5710
    [Google Scholar]
  38. Saby S., Vidal A., Suty H. 2005; Resistance of Legionella to disinfection in hot water distribution systems. Water Sci Technol 52:15–28
    [Google Scholar]
  39. Sauer K., Camper A. K., Ehrlich G. D., Costerton J. W., Davies D. G. 2002; Pseudomonas aeruginosa displays multiple phenotypes during development as a biofilm. J Bacteriol 184:1140–1154
    [Google Scholar]
  40. Sauer K., Cullen M. C., Rickard A. H., Zeef L. A., Davies D. G., Gilbert P. 2004; Characterization of nutrient-induced dispersion in Pseudomonas aeruginosa PAO1 biofilm. J Bacteriol 186:7312–7326
    [Google Scholar]
  41. Schembri M. A., Kjaergaard K., Klemm P. 2003; Global gene expression in Escherichia coli biofilms. Mol Microbiol 48:253–267
    [Google Scholar]
  42. Shirtliff M. E., Mader J. T., Camper A. K. 2002; Molecular interactions in biofilms. Chem Biol 9:859–871
    [Google Scholar]
  43. Singh P. K. 2004; Iron sequestration by human lactoferrin stimulates P. aeruginosa surface motility and blocks biofilm formation. Biometals 17:267–270
    [Google Scholar]
  44. Soderberg M. A., Rossier O., Cianciotto N. P. 2004; The type II protein secretion system of Legionella pneumophila promotes growth at low temperatures. J Bacteriol 186:3712–3720
    [Google Scholar]
  45. Steinert M., Hentschel U., Hacker J. 2002; Legionella pneumophila : an aquatic microbe goes astray. FEMS Microbiol Rev 26:149–162
    [Google Scholar]
  46. Stintzi A., Cornelis P., Hohnadel D., Meyer J. M., Dean C., Poole K., Kourambas S., Krishnapillai V. 1996; Novel pyoverdine biosynthesis gene(s) of Pseudomonas aeruginosa PAO. Microbiology 142:1181–1190
    [Google Scholar]
  47. Stintzi A., Johnson Z., Stonehouse M., Ochsner U., Meyer J. M., Vasil M. L., Poole K. 1999; The pvc gene cluster of Pseudomonas aeruginosa : role in synthesis of the pyoverdine chromophore and regulation by PtxR and PvdS. J Bacteriol 181:4118–4124
    [Google Scholar]
  48. Thomas V., Bouchez T., Nicolas V., Robert S., Loret J. F., Levi Y. 2004; Amoebae in domestic water systems: resistance to disinfection treatments and implication in Legionella persistence. J Appl Microbiol 97:950–963
    [Google Scholar]
  49. Visca P., Ciervo A., Orsi N. 1994; Cloning and nucleotide sequence of the pvdA gene encoding the pyoverdin biosynthetic enzyme l-ornithine N 5-oxygenase in Pseudomonas aeruginosa . J Bacteriol 176:1128–1140
    [Google Scholar]
  50. Waite R. D., Papakonstantinopoulou A., Littler E., Curtis M. A. 2005; Transcriptome analysis of Pseudomonas aeruginosa growth: comparison of gene expression in planktonic cultures and developing and mature biofilms. J Bacteriol 187:6571–6576
    [Google Scholar]
  51. Watnick P. I., Kolter R. 1999; Steps in the development of a Vibrio cholerae El Tor biofilm. Mol Microbiol 34:586–595
    [Google Scholar]
  52. Watnick P., Kolter R. 2000; Biofilm, city of microbes. J Bacteriol 182:2675–2679
    [Google Scholar]
  53. Whiteley M., Bangera M. G., Bumgarner R. E., Parsek M. R., Teitzel G. M., Lory S., Greenberg E. P. 2001; Gene expression in Pseudomonas aeruginosa biofilms. Nature 413:860–864
    [Google Scholar]
  54. Yang Y. H., Dudoit S., Luu P., Lin D. M., Peng V., Ngai J., Speed T. P. 2002; Normalization for cDNA microarray data: a robust composite method addressing single and multiple slide systematic variation. Nucleic Acids Res 30:e15
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.2007/008698-0
Loading
/content/journal/micro/10.1099/mic.0.2007/008698-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error