The density of negative charge in the cell wall influences two-component signal transduction in Free

Abstract

The Dlt system modulates the density of negative charge in the cell wall of Gram-positive bacteria by substituting anionic polymers (wall and lipoteichoic acids) with -alanine. The and genes, regulated by the CssRS two-component system (TCS) and encoding membrane-associated protein quality control proteases, were expressed at strongly decreased levels in a mutant with defective Dlt ( : : miniTn) as compared to the wild-type strain under a secretion stress condition (hypersecretion of AmyQ -amylase). The level of HtrA protein in the extracellular proteome of the mutant was decreased consistently. Expression from the promoter of the () operon (P) is dependent on the LiaRS TCS. The Dlt defect increased the expression from P under two stress conditions, AmyQ hypersecretion and treatment with a cationic antimicrobial peptide (LL-37), but decreased the expression in vancomycin-treated cells. Furthermore, Dlt inactivation enhanced the expression of the YxdJK-regulated gene in LL-37-treated cells. The increased net negative charge of the cell wall seems to cause varied and opposite effects on the expression of CssRS-, LiaRS- and YxdJK-regulated genes under different stress conditions. The results suggest that TCSs which sense misfolded proteins or peptides are modulated by the density of negative charge in the cell wall. The density of negative charge on the outer surface of the cell membrane did not have a similar effect on TCSs.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.2007/008680-0
2007-07-01
2024-03-29
Loading full text...

Full text loading...

/deliver/fulltext/micro/153/7/2126.html?itemId=/content/journal/micro/10.1099/mic.0.2007/008680-0&mimeType=html&fmt=ahah

References

  1. Antelmann H., Tjalsma H., Voigt B., Ohlmeier S., Bron S., Hecker M., van Dijl J. M. 2001; A proteomic view on genome-based signal peptide predictions. Genome Res 11:1484–1502 [CrossRef]
    [Google Scholar]
  2. Antelmann H., Yamamoto H., Sekiguchi J., Hecker M. 2002; Stabilization of cell wall proteins in Bacillus subtilis : a proteomic approach. Proteomics 2:591–602 [CrossRef]
    [Google Scholar]
  3. Antelmann H., Darmon E., Noone D., Veening J. W., Westers H., Bron S., Kuipers O. P., Devine K. M., Hecker M., van Dijl J. M. 2003; The extracellular proteome of Bacillus subtilis under secretion stress conditions. Mol Microbiol 49:143–156 [CrossRef]
    [Google Scholar]
  4. Buttner K., Bernhardt J., Scharf C., Schmid R., Mader U., Eymann C., Antelmann H., Volker A., Volker U., Hecker M. 2001; A comprehensive two-dimensional map of cytosolic proteins of Bacillus subtilis. Electrophoresis 22:2908–2935 [CrossRef]
    [Google Scholar]
  5. Cao M., Helmann J. D. 2004; The Bacillus subtilis extracytoplasmic-function σ X factor regulates modification of the cell envelope and resistance to cationic antimicrobial peptides. J Bacteriol 186:1136–1146 [CrossRef]
    [Google Scholar]
  6. Connolly L., De Las Penas A., Alba B. M., Gross C. A. 1997; The response to extracytoplasmic stress in Escherichia coli is controlled by partially overlapping pathways. Genes Dev 11:2012–2021 [CrossRef]
    [Google Scholar]
  7. Craynest M., Jorgensen S., Sarvas M., Kontinen V. P. 2003; Enhanced secretion of heterologous cyclodextrin glycosyltransferase by a mutant of Bacillus licheniformis defective in the d-alanylation of teichoic acids. Lett Appl Microbiol 37:75–80 [CrossRef]
    [Google Scholar]
  8. Danese P. N., Silhavy T. J. 1997; The σ E and the Cpx signal transduction systems control the synthesis of periplasmic protein-folding enzymes in Escherichia coli. Genes Dev 11:1183–1193 [CrossRef]
    [Google Scholar]
  9. Darmon E., Noone D., Masson A., Bron S., Kuipers O. P., Devine K. M., van Dijl J. M. 2002; A novel class of heat and secretion stress-responsive genes is controlled by the autoregulated CssRS two-component system of Bacillus subtilis. J Bacteriol 184:5661–5671 [CrossRef]
    [Google Scholar]
  10. Hastrup S., Jacobs M. F. 1990; Lethal phenotype conferred by xylose-induced overproduction of Apr–LacZ fusion protein. In Genetics and Biotechnology of Bacilli, pp 33–41 Edited by Zukowski M. M., Ganesan A. T., Hoch J. A. San Diego: Academic Press;
    [Google Scholar]
  11. Hyyryläinen H.-L., Vitikainen M., Thwaite J., Wu H., Sarvas M., Harwood C., Kontinen V., Spehenson K. 2000; d-Alanine substitution of teichoic acids as a modulator of protein folding and stability at the cytoplasmic membrane/cell wall interface of Bacillus subtilis. J Biol Chem 275:26696–26703
    [Google Scholar]
  12. Hyyryläinen H. L., Bolhuis A., Darmon E., Muukkonen L., Koski P., Vitikainen M., Sarvas M., Pragai Z., Bron S. other authors 2001; A novel two-component regulatory system in Bacillus subtilis for the survival of severe secretion stress. Mol Microbiol 41:1159–1172
    [Google Scholar]
  13. Hyyryläinen H. L., Sarvas M., Kontinen V. P. 2005; Transcriptome analysis of the secretion stress response of Bacillus subtilis. Appl Microbiol Biotechnol 67:389–396 [CrossRef]
    [Google Scholar]
  14. Jordan S., Junker A., Helmann J. D., Mascher T. 2006; Regulation of LiaRS-dependent gene expression in Bacillus subtilis : identification of inhibitor proteins, regulator binding sites, and target genes of a conserved cell envelope stress-sensing two-component system. J Bacteriol 188:5153–5166 [CrossRef]
    [Google Scholar]
  15. Kobayashi K., Ehrlich S. D., Albertini A., Amati G., Andersen K. K., Arnaud M., Asai K., Ashikaga S., Aymerich S. other authors 2003; Essential Bacillus subtilis genes. Proc Natl Acad Sci U S A 100:4678–4683 [CrossRef]
    [Google Scholar]
  16. Kontinen V. P., Saris P., Sarvas M. 1991; A gene ( prsA ) of Bacillus subtilis involved in a novel, late stage of protein export. Mol Microbiol 5:1273–1283 [CrossRef]
    [Google Scholar]
  17. Kristian S. A., Datta V., Weidenmaier C., Kansal R., Fedtke I., Peschel A., Gallo R. L., Nizet V. 2005; d-Alanylation of teichoic acids promotes group A streptococcus antimicrobial peptide resistance, neutrophil survival, and epithelial cell invasion. J Bacteriol 187:6719–6725 [CrossRef]
    [Google Scholar]
  18. Leskelä S., Wahlström E., Hyyryläinen H. L., Jacobs M., Palva A., Sarvas M., Kontinen V. P. 1999; Ecs, an ABC transporter of Bacillus subtilis : dual signal transduction functions affecting expression of secreted proteins as well as their secretion. Mol Microbiol 31:533–543 [CrossRef]
    [Google Scholar]
  19. Mascher T., Margulis N. G., Wang T., Ye R. W., Helmann J. D. 2003; Cell wall stress responses in Bacillus subtilis : the regulatory network of the bacitracin stimulon. Mol Microbiol 50:1591–1604 [CrossRef]
    [Google Scholar]
  20. Mascher T., Zimmer S. L., Smith T. A., Helmann J. D. 2004; Antibiotic-inducible promoter regulated by the cell envelope stress-sensing two-component system LiaRS of Bacillus subtilis. Antimicrob Agents Chemother 48:2888–2896 [CrossRef]
    [Google Scholar]
  21. Matsumoto K., Okada M., Horikoshi Y., Matsuzaki H., Kishi T., Itaya M., Shibuya I. 1998; Cloning, sequencing, and disruption of the Bacillus subtilis psd gene coding for phosphatidylserine decarboxylase. J Bacteriol 180:100–106
    [Google Scholar]
  22. Missiakas D., Raina S. 1997; Protein misfolding in the cell envelope of Escherichia coli : new signaling pathways. Trends Biochem Sci 22:59–63 [CrossRef]
    [Google Scholar]
  23. Msadek T., Kunst F., Henner D., Klier A., Rapoport G., Dedonder R. 1990; Signal transduction pathway controlling synthesis of a class of degradative enzymes in Bacillus subtilis : expression of the regulatory genes and analysis of mutations in degS and degU. J Bacteriol 172:824–834
    [Google Scholar]
  24. O'Connell K. L., Stults J. T. 1997; Identification of mouse liver proteins on two-dimensional electrophoresis gels by matrix-assisted laser desorption/ionization mass spectrometry of in situ enzymatic digests. Electrophoresis 18:349–359 [CrossRef]
    [Google Scholar]
  25. Palva I., Sarvas M., Lehtovaara P., Sibakov M., Kääriäinen L. 1982; Secretion of Escherichia coli β -lactamase from Bacillus subtilis by the aid of α -amylase signal sequence. Proc Natl Acad Sci U S A 79:5582–5586 [CrossRef]
    [Google Scholar]
  26. Perego M., Glaser P., Minutello A., Strauch M. A., Leopold K., Fischer W. 1995; Incorporation of d-alanine into lipoteichoic acid and wall teichoic acid in Bacillus subtilis . Identification of genes and regulation. J Biol Chem 270:15598–15606 [CrossRef]
    [Google Scholar]
  27. Peschel A., Otto M., Jack R. W., Kalbacher H., Jung G., Götz F. 1999; Inactivation of the dlt operon in Staphylococcus aureus confers sensitivity to defensins, protegrins and other antimicrobial peptides. J Biol Chem 274:8405–8410 [CrossRef]
    [Google Scholar]
  28. Peschel A., Jack R. W., Otto M., Collins L. V., Staubitz P., Nicholson G., Kalbacher H., Nieuwenhuizen W. F., Jung G. other authors 2001; Staphylococcus aureus resistance to human defensins and evasion of neutrophil killing via the novel virulence factor MprF is based on modification of membrane lipids with l–lysine. J Exp Med 193:1067–1076 [CrossRef]
    [Google Scholar]
  29. Pietiäinen M., Gardemeister M., Mecklin M., Leskelä S., Sarvas M., Kontinen V. P. 2005; Cationic antimicrobial peptides elicit a complex stress response in Bacillus subtilis that involves ECF-type sigma factors and two-component signal transduction systems. Microbiology 151:1577–1592 [CrossRef]
    [Google Scholar]
  30. Pogliano J., Lynch A. S., Belin D., Lin E. C. C., Beckwith J. 1997; Regulation of Escherichia coli cell envelope proteins involved in protein folding and degradation by the Cpx two-component system. Genes Dev 11:1169–1182 [CrossRef]
    [Google Scholar]
  31. Poyart C., Pellegrini E., Marceau M., Baptista M., Jaubert F., Lamy M. C., Trieu-Cuot P. 2003; Attenuated virulence of Streptococcus agalactiae deficient in d-alanyl-lipoteichoic acid is due to an increased susceptibility to defensins and phagocytic cells. Mol Microbiol 49:1615–1625 [CrossRef]
    [Google Scholar]
  32. Raivio T. L., Silhavy T. J. 1999; The σ E and Cpx regulatory pathways: overlapping but distinct envelope stress responses. Curr Opin Microbiol 2:159–165 [CrossRef]
    [Google Scholar]
  33. Sarvas M., Harwood C. R., Bron S., van Dijl J. M. 2004; Post-translocational folding of secretory proteins in Gram-positive bacteria. Biochim Biophys Acta 1694:311–327
    [Google Scholar]
  34. Staubitz P., Peschel A. 2002; MprF-mediated lysinylation of phospholipids in Bacillus subtilis – protection against bacteriocins in terrestrial habitats?. Microbiology 148:3331–3332
    [Google Scholar]
  35. Thwaite J. E., Baillie L. W., Carter N. M., Stephenson K., Rees M., Harwood C. R., Emmerson P. T. 2002; Optimization of the cell wall microenvironment allows increased production of recombinant Bacillus anthracis protective antigen from B. subtilis. Appl Environ Microbiol 68:227–234 [CrossRef]
    [Google Scholar]
  36. Tjalsma H., Antelmann H., Jongbloed J. D., Braun P. G., Darmon E., Dorenbos R., Dubois J. Y., Westers H., Zanen G. other authors 2004; Proteomics of protein secretion by Bacillus subtilis : separating the ‘secrets’ of the secretome. Microbiol Mol Biol Rev 68:207–233 [CrossRef]
    [Google Scholar]
  37. Vagner V., Dervyn E., Ehrlich S. D. 1998; A vector for systematic gene inactivation in Bacillus subtilis. Microbiology 144:3097–3104 [CrossRef]
    [Google Scholar]
  38. Vitikainen M., Pummi T., Airaksinen U., Wu H., Sarvas M., Kontinen V. P. 2001; Quantitation of the capacity of the secretion apparatus and requirement for PrsA in growth and secretion of α -amylase in Bacillus subtilis. J Bacteriol 183:1881–1890 [CrossRef]
    [Google Scholar]
  39. Vitikainen M., Kontinen V. P., Sarvas M., Hyyryläinen H. L., Kivimäki A. 2005; Secretion of heterologous proteins in Bacillus subtilis can be improved by engineering cell components affecting post-translocational protein folding and degradation. J Appl Microbiol 99:363–375 [CrossRef]
    [Google Scholar]
  40. Wiegert T., Homuth G., Versteeg S., Schumann W. 2001; Alkaline shock induces the Bacillus subtilis σ W regulon. Mol Microbiol 41:59–71 [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.2007/008680-0
Loading
/content/journal/micro/10.1099/mic.0.2007/008680-0
Loading

Data & Media loading...

Most cited Most Cited RSS feed