1887

Abstract

Random transposon mutagenesis led to the isolation of a novel mutant that is defective in nitrogen fixation during symbiosis with . The mutated locus, designated , encodes a putative cell-envelope protein displaying no significant sequence similarity to proteins with known functions. This mutant elicits the formation of nodule-like bumps and root-hair curling, but not the elongation of infection threads, on roots. This is reminiscent of the phenotypes of rhizobial mutants impaired in cyclic -glucan biosynthesis. The mutant exhibits partially reduced content of cell-associated glucans and intermediate deficiency of motility under hypo-osmotic conditions as compared to a glucan-deficient mutant. Second-site pseudorevertants of the mutant were isolated by selecting for restoration of symbiotic nitrogen fixation. A subset of pseudorevertants restored both symbiotic capability and glucan content to levels comparable to that of the wild-type. These results suggest that the Cep product acts on a successful symbiosis by affecting cell-associated glucan content.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.2007/008631-0
2007-12-01
2020-08-11
Loading full text...

Full text loading...

/deliver/fulltext/micro/153/12/3983.html?itemId=/content/journal/micro/10.1099/mic.0.2007/008631-0&mimeType=html&fmt=ahah

References

  1. Banba M., Siddique A.-B. M., Kouchi H., Izui K., Hata S.. 2001; Lotus japonicus forms early senescent root nodules with Rhizobium etli . Mol Plant Microbe Interact14:173–180
    [Google Scholar]
  2. Becker A., Schmidt M., Jäger W., Pühler A.. 1995; New gentamicin-resistance and lacZ promoter-probe cassettes suitable for insertion mutagenesis and generation of transcriptional fusions. Gene162:37–39
    [Google Scholar]
  3. Bhagwat A. A., Tully R. E., Keister D. L.. 1992; Isolation and characterization of an ndvB locus from Rhizobium fredii . Mol Microbiol6:2159–2165
    [Google Scholar]
  4. Bhagwat A. A., Tully R. E., Keister D. L.. 1993; Identification and cloning of a cyclic β -(1→3), β -(1→6)-d-glucan synthesis locus from Bradyrhizobium japonicum . FEMS Microbiol Lett114:139–144
    [Google Scholar]
  5. Bhagwat A. A., Gross K. C., Tully R. E., Keister D. L.. 1996; β -Glucan synthesis in Bradyrhizobium japonicum : characterization of a new locus ( ndvC ) influencing β -(1→6) linkages. J Bacteriol178:4635–4642
    [Google Scholar]
  6. Bhagwat A. A., Mithöfer A., Pfeffer P. E., Kraus C., Spickers N., Hotchkiss A., Ebel J., Keister D. L.. 1999; Further studies of the role of cyclic β -glucans in symbiosis. An ndvC mutant of Bradyrhizobium japonicum synthesizes cyclodecakis-(1→3)- β -glucosyl. Plant Physiol119:1057–1064
    [Google Scholar]
  7. Bittner A. N., Foltz A., Oke V.. 2007; Only one of five groEL genes is required for viability and successful symbiosis in Sinorhizobium meliloti . J Bacteriol189:1884–1889
    [Google Scholar]
  8. Bohin J.-P.. 2000; Osmoregulated periplasmic glucans in Proteobacteria. FEMS Microbiol Lett186:11–19
    [Google Scholar]
  9. Breedveld M. W., Miller K. J.. 1994; Cyclic β -glucans of members of the family Rhizobiaceae . Microbiol Rev58:145–161
    [Google Scholar]
  10. Breedveld M. W., Miller K. J.. 1995; Synthesis of glycerophosphorylated cyclic (1,2)- β -glucans in Rhizobium meliloti strain 1021 after osmotic shock. Microbiology141:583–588
    [Google Scholar]
  11. Breedveld M. W., Zevenhuizen L. P. T. M., Zehnder A. J. B.. 1990; Osmotically induced oligo- and polysaccharide synthesis by Rhizobium meliloti SU-47. J Gen Microbiol136:2511–2519
    [Google Scholar]
  12. Breedveld M. W., Hadley J. A., Miller K. J.. 1995; A novel cyclic β -1,2-glucan mutant of Rhizobium meliloti . J Bacteriol177:6346–6351
    [Google Scholar]
  13. Broughton W. J., Dilworth M. J.. 1971; Control of leghaemoglobin synthesis in snake beans. Biochem J125:1075–1080
    [Google Scholar]
  14. Cangelosi G. A., Martinetti G., Nester E. W.. 1990; Osmosensitivity phenotypes of Agrobacterium tumefaciens mutants that lack periplasmic β -1,2-glucan. J Bacteriol172:2172–2174
    [Google Scholar]
  15. Charles T. C., Newcomb W., Finan T. M.. 1991; ndvF , a novel locus located on megaplasmid pRmeSU47b (pEXO) of Rhizobium meliloti , is required for normal nodule development. J Bacteriol173:3981–3992
    [Google Scholar]
  16. Chen R., Bhagwat A. A., Keister D.. 2003; A motility revertant of the ndvB mutant of Bradyrhizobium japonicum . Curr Microbiol47:431–433
    [Google Scholar]
  17. D'Antuono A. L., Casabuono A., Couto A., Ugalde R. A., Lepek V. C.. 2005; Nodule development induced by Mesorhizobium loti mutant strains affected in polysaccharide synthesis. Mol Plant Microbe Interact18:446–457
    [Google Scholar]
  18. de Iannino N. I., Briones G., Iannino F., Ugalde R. A.. 2000; Osmotic regulation of cyclic 1,2- β -glucan synthesis. Microbiology146:1735–1742
    [Google Scholar]
  19. Delgado M. J., Bedmar E. J., Downie J. A.. 1998; Genes involved in the formation and assembly of rhizobial cytochromes and their role in symbiotic nitrogen fixation. Adv Microb Physiol40:191–231
    [Google Scholar]
  20. Dombrecht B., Vanderleyden J., Michiels J.. 2001; Stable RK2-derived cloning vectors for the analysis of gene expression and gene function in Gram-negative bacteria. Mol Plant Microbe Interact14:426–430
    [Google Scholar]
  21. Dunlap J., Minami E., Bhagwat A. A., Keister D. L., Stacey G.. 1996; Nodule development induced by mutants of Bradyrhizobium japonicum defective in cyclic β -glucan synthesis. Mol Plant Microbe Interact9:546–555
    [Google Scholar]
  22. Dylan T., Ielpi L., Stanfield S., Kashyap L., Douglas C., Yanofsky M., Nester E., Helinski D. R., Ditta G.. 1986; Rhizobium meliloti genes required for nodule development are related to chromosomal virulence genes in Agrobacterium tumefaciens . Proc Natl Acad Sci U S A83:4403–4407
    [Google Scholar]
  23. Dylan T., Helinski D. R., Ditta G. S.. 1990a; Hypoosmotic adaptation in Rhizobium meliloti requires β -(1→2)-glucan. J Bacteriol172:1400–1408
    [Google Scholar]
  24. Dylan T., Nagpal P., Helinski D. R., Ditta G. S.. 1990b; Symbiotic pseudorevertants of Rhizobium meliloti ndv mutants. J Bacteriol172:1409–1417
    [Google Scholar]
  25. Finan T. M., Kunkel B., De Vos G. F., Signer E. R.. 1986; Second symbiotic megaplasmid in Rhizobium meliloti carrying exopolysaccharide and thiamine synthesis genes. J Bacteriol167:66–72
    [Google Scholar]
  26. Fraysse N., Couderc F., Poinsot V.. 2003; Surface polysaccharide involvement in establishing the rhizobium-legume symbiosis. Eur J Biochem270:1365–1380
    [Google Scholar]
  27. Galibert F., Finan T. M., Long S. R., Puhler A., Abola P., Ampe F., Barloy-Hubler F., Barnett M. J., Becker A.. other authors 2001; The composite genome of the legume symbiont Sinorhizobium meliloti . Science293:668–672
    [Google Scholar]
  28. Geiger O., Weissborn A. C., Kennedy E. P.. 1991; Biosynthesis and excretion of cyclic glucans by Rhizobium meliloti 1021. J Bacteriol173:3021–3024
    [Google Scholar]
  29. Glazebrook J., Walker G. C.. 1991; Genetic techniques in Rhizobium meliloti . Methods Enzymol204:398–418
    [Google Scholar]
  30. González V., Santamaría R. I., Bustos P., Hernández-González I., Medrano-Soto A., Moreno-Hagelsieb G., Janga S. C., Ramírez M. A., Jiménez-Jacinto V.. other authors 2006; The partitioned Rhizobium etli genome: genetic and metabolic redundancy in seven interacting replicons. Proc Natl Acad Sci U S A103:3834–3839
    [Google Scholar]
  31. Hadri A.-E., Bisseling T.. 1998; Responses of the plant to Nod factors. In The Rhizobiaceae: Molecular Biology of Model Plant-Associated Bacteria pp403–416 Edited by Spaink H. P., Dondorosi A., Hooykaas P. J. J. Dordrecht, The Netherlands: Kluwer Academic Publishers;
  32. Halling S. M., Peterson-Burch B. D., Bricker B. J., Zuerner R. L., Qing Z., Li L.-L., Kapur V., Alt D. P., Olsen S. C.. 2005; Completion of the genome sequence of Brucella abortus and comparison to the highly similar genomes of Brucella melitensis and Brucella suis . J Bacteriol187:2715–2726
    [Google Scholar]
  33. Handberg K., Stougaard J.. 1992; Lotus japonicus , an autogamous, diploid legume species for classical and molecular genetics. Plant J2:487–496
    [Google Scholar]
  34. Hattori Y., Omori H., Hanyu M., Kaseda N., Mishima E., Kaneko T., Tabata S., Saeki K.. 2002; Ordered cosmid library of the Mesorhizobium loti MAFF303099 genome for systematic gene disruption and complementation analysis. Plant Cell Physiol43:1542–1557
    [Google Scholar]
  35. Kaneko T., Nakamura Y., Sato S., Asamizu E., Kato T., Sasamoto S., Watanabe A., Idesawa K., Ishikawa A.. other authors 2000; Complete genome structure of the nitrogen-fixing symbiotic bacterium Mesorhizobium loti . DNA Res7:331–338
    [Google Scholar]
  36. Koehler L. H.. 1952; Differentiation of carbohydrates by anthrone reaction rate and color intensity. Anal Chem24:1576–1579
    [Google Scholar]
  37. Lepek V., Navarro de Navarro Y., Ugalde R. A.. 1990; Synthesis of β (1-2)glucan in Rhizobium loti . Arch Microbiol155:35–41
    [Google Scholar]
  38. Lodwig E., Poole P.. 2003; Metabolism of Rhizobium bacteroids. Crit Rev Plant Sci22:37–78
    [Google Scholar]
  39. Long S., McCune S., Walker G. C.. 1988; Symbiotic loci of Rhizobium meliloti identified by random Tn phoA mutagenesis. J Bacteriol170:4257–4265
    [Google Scholar]
  40. Manoil C., Beckwith J.. 1985; Tn phoA : a transposon probe for protein export signals. Proc Natl Acad Sci U S A82:8129–8133
    [Google Scholar]
  41. Miller J. H.. 1992; A Short Course in Bacterial Genetics: a Laboratory Manual and Handbook for Escherichia coli and Related Bacteria Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
  42. Miller K. J., Kennedy E. P., Reinhold V. N.. 1986; Osmotic adaptation by Gram-negative bacteria: possible role for periplasmic oligosaccharides. Science231:48–51
    [Google Scholar]
  43. Miller K. J., Reinhold V. N., Weissborn A. C., Kennedy E. P.. 1987; Cyclic glucans produced by Agrobacterium tumefaciens are substituted with sn -1-phosphoglycerol residues. Biochim Biophys Acta901:112–118
    [Google Scholar]
  44. Miller K. J., Gore R. S., Benesi A. J.. 1988; Phosphoglycerol substituents present on the cyclic β -1,2-glucans of Rhizobium meliloti 1021 are derived from phosphatidylglycerol. J Bacteriol170:4569–4575
    [Google Scholar]
  45. Miller K. J., Gore R. S., Johnson R., Benesi A. J., Reinhold V. N.. 1990; Cell-associated oligosaccharides of Bradyrhizobium spp. J Bacteriol172:136–142
    [Google Scholar]
  46. Mithöfer A., Bhagwat A. A., Feger M., Ebel J.. 1996; Suppression of fungal β -glucan-induced plant defence in soybean ( Glycine max L.) by cyclic 1,3–1,6- β -glucans from the symbiont Bradyrhizobium japonicum . Planta199:270–275
    [Google Scholar]
  47. Mitsui H., Sato T., Sato Y., Ito N., Minamisawa K.. 2004; Sinorhizobium meliloti RpoH1 is required for effective nitrogen-fixing symbiosis with alfalfa. Mol Genet Genomics271:416–425
    [Google Scholar]
  48. Müller P., Klaucke A., Wegel E.. 1995; Tn phoA -induced symbiotic mutants of Bradyrhizobium japonicum that impair cell and tissue differentiation in Glycine max nodules. Planta197:163–175
    [Google Scholar]
  49. Niwa S., Kawaguchi M., Imaizumi-Anraku H., Chechetka S. A., Ishizaka M., Ikuta A., Kouchi H.. 2001; Responses of a model legume Lotus japonicus to lipochitin oligosaccharide nodulation factors purified from Mesorhizobium loti JRL501. Mol Plant Microbe Interact14:848–856
    [Google Scholar]
  50. Park J. T., Johnson M. J.. 1949; A submicrodetermination of glucose. J Biol Chem181:149–151
    [Google Scholar]
  51. Prentki P., Krisch H. M.. 1984; In vitro insertional mutagenesis with a selectable DNA fragment. Gene29:303–313
    [Google Scholar]
  52. Pugsley A. P.. 1993; The complete general secretory pathway in Gram-negative bacteria. Microbiol Rev57:50–108
    [Google Scholar]
  53. Quandt J., Hillemann A., Niehaus K., Arnold W., Pühler A.. 1992; An osmorevertant of a Rhizobium meliloti ndvB deletion mutant forms infection threads but is defective in bacteroid development. Mol Plant Microbe Interact5:420–427
    [Google Scholar]
  54. Roset M. S., Ciocchini A. E., Ugalde R. A., Iñón de Iannino N.. 2004; Molecular cloning and characterization of cgt , the Brucella abortus cyclic β -1,2-glucan transporter gene, and its role in virulence. Infect Immun72:2263–2271
    [Google Scholar]
  55. Rumley M. K., Therisod H., Weissborn A. C., Kennedy E. P.. 1992; Mechanisms of regulation of the biosynthesis of membrane-derived oligosaccharides in Escherichia coli . J Biol Chem267:11806–11810
    [Google Scholar]
  56. Sambrook J., Russell D. W.. 2001; Molecular Cloning: a Laboratory Manual , 3rd edn. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
  57. Schäfer A., Tauch A., Jäger W., Kalinowski J., Thierbach G., Pühler A.. 1994; Small mobilizable multi-purpose cloning vectors derived from the Escherichia coli plasmids pK18 and pK19: selection of defined deletions in the chromosome of Corynebacterium glutamicum . Gene145:69–73
    [Google Scholar]
  58. Stock J. B., Rauch B., Roseman S.. 1977; Periplasmic space in Salmonella typhimurium and Escherichia coli . J Biol Chem252:7850–7861
    [Google Scholar]
  59. Tully R. E., Keister D. L., Gross K. C.. 1990; Fractionation of the β -linked glucans of Bradyrhizobium japonicum and their response to osmotic potential. Appl Environ Microbiol56:1518–1522
    [Google Scholar]
  60. Young J. P. W., Crossman L. C., Johnston A. W. B., Thomson N. R., Ghazoui Z. F., Hull K. H., Wexler M., Curson A. R., Todd J. D.. other authors 2006; The genome of Rhizobium leguminosarum has recognizable core and accessory components. Genome Biol7:R34
    [Google Scholar]
  61. Zevenhuizen L. P. T. M., Van Neerven A. R. W.. 1983; (1→2)- β -d-Glucan and acidic oligosaccharides produced by Rhizobium meliloti . Carbohydr Res118:127–134
    [Google Scholar]
  62. Zorreguieta A., Cavaignac S., Geremia R. A., Ugalde R. A.. 1990; Osmotic regulation of β (1-2)-glucan synthesis in members of the family Rhizobiaceae . J Bacteriol172:4701–4704
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.2007/008631-0
Loading
/content/journal/micro/10.1099/mic.0.2007/008631-0
Loading

Data & Media loading...

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error