Effects of Fis on gene expression during different growth stages Free

Abstract

Fis is a nucleoid-associated protein in that is abundant during early exponential growth in rich medium but is in short supply during stationary phase. Its role as a transcriptional regulator has been demonstrated for an increasing number of genes. In order to gain insight into the global effects of Fis on gene expression during different stages of growth in rich medium, DNA microarray analyses were conducted in and wild-type strains during early, mid-, late-exponential and stationary growth phases. The results uncovered 231 significantly regulated genes that were distributed over 15 functional categories. Regulatory effects were observed at all growth stages examined. Coordinate upregulation was observed for a number of genes involved in translation, flagellar biosynthesis and motility, nutrient transport, carbon compound metabolism, and energy metabolism at different growth stages. Coordinate down-regulation was also observed for genes involved in stress response, amino acid and nucleotide biosynthesis, energy and intermediary metabolism, and nutrient transport. As cells transitioned from the early to the late-exponential growth phase, different functional categories of genes were regulated, and a gradual shift occurred towards mostly down-regulation. The results demonstrate that the growth phase-dependent Fis expression triggers coordinate regulation of 15 categories of functionally related genes during specific stages of growth of an culture.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.2007/008565-0
2007-09-01
2024-03-29
Loading full text...

Full text loading...

/deliver/fulltext/micro/153/9/2922.html?itemId=/content/journal/micro/10.1099/mic.0.2007/008565-0&mimeType=html&fmt=ahah

References

  1. Aiba H., Adhya S., de Crombrugghe B. 1981; Evidence for two functional gal promoters in intact Escherichia coli cells. J Biol Chem 256:11905–11910
    [Google Scholar]
  2. Ali Azam T., Iwata A., Nishimura A., Ueda S., Ishihama A. 1999; Growth phase-dependent variation in protein composition of the Escherichia coli nucleoid. J Bacteriol 181:6361–6370
    [Google Scholar]
  3. Baev M. V., Baev D., Radek A. J., Campbell J. W. 2006; Growth of Escherichia coli MG1655 on LB medium: monitoring utilization of sugars, alcohols, and organic acids with transcriptional microarrays. Appl Microbiol Biotechnol 71:310–316
    [Google Scholar]
  4. Ball C. A., Johnson R. C. 1991; Efficient excision of phage lambda from the Escherichia coli chromosome requires the Fis protein. J Bacteriol 173:4027–4031
    [Google Scholar]
  5. Ball C. A., Osuna R., Ferguson K. C., Johnson R. C. 1992; Dramatic changes in Fis levels upon nutrient upshift in Escherichia coli. J Bacteriol 174:8043–8056
    [Google Scholar]
  6. Bartlett M. S., Gaal T., Ross W., Gourse R. L. 2000; Regulation of rRNA transcription is remarkably robust: FIS compensates for altered nucleoside triphosphate sensing by mutant RNA polymerases at Escherichia coli rrn P1 promoters. J Bacteriol 182:1969–1977
    [Google Scholar]
  7. Berg H. C. 2003; The rotary motor of bacterial flagella. Annu Rev Biochem 72:19–54
    [Google Scholar]
  8. Blot N., Mavathur R., Geertz M., Travers A., Muskhelishvili G. 2006; Homeostatic regulation of supercoiling sensitivity coordinates transcription of the bacterial genome. EMBO Rep 7:710–715
    [Google Scholar]
  9. Bokal A. J., Ross W., Gaal T., Johnson R. C., Gourse R. L. 1997; Molecular anatomy of a transcription activation patch: FIS–RNA polymerase interactions at the Escherichia coli rrnB P1 promoter. EMBO J 16:154–162
    [Google Scholar]
  10. Bordes P., Bouvier J., Conter A., Kolb A., Gutierrez C. 2002; Transient repressor effect of Fis on the growth phase-regulated osmE promoter of Escherichia coli K12. Mol Genet Genomics 268:206–213
    [Google Scholar]
  11. Bosch L., Nilsson L., Vijgenboom E., Verbeek H. 1990; FIS-dependent trans-activation of tRNA and rRNA operons of Escherichia coli. Biochim Biophys Acta 1050:293–301
    [Google Scholar]
  12. Brazma A., Hingamp P., Quackenbush J., Sherlock G., Spellman P., Stoeckert C., Aach J., Ansorge W., Ball C. A. other authors 2001; Minimum information about a microarray experiment (MIAME) – toward standards for microarray data. Nat Genet 29:365–371
    [Google Scholar]
  13. Browning D. F., Cole J. A., Busby S. J. 2000; Suppression of FNR-dependent transcription activation at the Escherichia coli nir promoter by Fis, IHF and H-NS: modulation of transcription initiation by a complex nucleo-protein assembly. Mol Microbiol 37:1258–1269
    [Google Scholar]
  14. Browning D. F., Cole J. A., Busby S. J. 2004a; Transcription activation by remodelling of a nucleoprotein assembly: the role of NarL at the FNR-dependent Escherichia coli nir promoter. Mol Microbiol 53:203–215
    [Google Scholar]
  15. Browning D. F., Beatty C. M., Sanstad E. A., Gunn K. E., Busby S. J., Wolfe A. J. 2004b; Modulation of CRP-dependent transcription at the Escherichia coli acsP2 promoter by nucleoprotein complexes: anti-activation by the nucleoid proteins FIS and IHF. Mol Microbiol 51:241–254
    [Google Scholar]
  16. Browning D. F., Grainger D. C., Beatty C. M., Wolfe A. J., Cole J. A., Busby S. J. 2005; Integration of three signals at the Escherichia coli nrf promoter: a role for Fis protein in catabolite repression. Mol Microbiol 57:496–510
    [Google Scholar]
  17. Broyles S. S., Pettijohn D. E. 1986; Interaction of the Escherichia coli HU protein with DNA. Evidence for formation of nucleosome-like structures with altered DNA helical pitch. J Mol Biol 187:47–60
    [Google Scholar]
  18. Caramel A., Schnetz K. 2000; Antagonistic control of the Escherichia coli bgl promoter by FIS and CAP in vitro. Mol Microbiol 36:85–92
    [Google Scholar]
  19. Carsiotis M., Weinstein D. L., Karch H., Holder I. A., O'Brien A. D. 1984; Flagella of Salmonella typhimurium are a virulence factor in infected C57BL/6J mice. Infect Immun 46:814–818
    [Google Scholar]
  20. Cashel M., Gentry D. R., Hernandez V. J., Vinella D. 1996 The Stringent Response, 2nd edn. Washington, DC: ASM Press;
  21. Chang D. E., Smalley D. J., Conway T. 2002; Gene expression profiling of Escherichia coli growth transitions: an expanded stringent response model. Mol Microbiol 45:289–306
    [Google Scholar]
  22. Claret L., Rouviere-Yaniv J. 1996; Regulation of HU alpha and HU beta by CRP and FIS in Escherichia coli. J Mol Biol 263:126–139
    [Google Scholar]
  23. Cunningham L., Gruer M. J., Guest J. R. 1997; Transcriptional regulation of the aconitase genes ( acnA and acnB) of Escherichia coli. Microbiology 143:3795–3805
    [Google Scholar]
  24. Emilsson V., Nilsson L. 1995; Factor for inversion stimulation-dependent growth rate regulation of serine and threonine tRNA species. J Biol Chem 270:16610–16614
    [Google Scholar]
  25. Falconi M., Brandi A., La Teana A., Gualerzi C. O., Pon C. L. 1996; Antagonistic involvement of FIS and H-NS proteins in the transcriptional control of hns expression. Mol Microbiol 19:965–975
    [Google Scholar]
  26. Feng J.-A., Yuan H. A., Finkel S. E., Johnson R. C., Kaczor-Grzeskowiak M., Dickerson R. E. 1992; The interaction of Fis protein with its DNA-binding sequences. In Structure and Function pp 1–9 Edited by Sarma R. H., Sarma M. H. Schenectady, NY: Adenine Press;
    [Google Scholar]
  27. Filutowicz M., Ross W., Wild J., Gourse R. L. 1992; Involvement of Fis protein in replication of the Escherichia coli chromosome. J Bacteriol 174:398–407
    [Google Scholar]
  28. Finkel S. E., Johnson R. C. 1992; The Fis protein: it's not just for DNA inversion anymore. Mol Microbiol 6:3257–3265
    [Google Scholar]
  29. Giron J. A., Torres A. G., Freer E., Kaper J. B. 2002; The flagella of enteropathogenic Escherichia coli mediate adherence to epithelial cells. Mol Microbiol 44:361–379
    [Google Scholar]
  30. Goh E. B., Yim G., Tsui W., McClure J., Surette M. G., Davies J. 2002; Transcriptional modulation of bacterial gene expression by subinhibitory concentrations of antibiotics. Proc Natl Acad Sci U S A 99:17025–17030
    [Google Scholar]
  31. Gomez-Gomez J. M., Baquero F., Blazquez J. 1996; Cyclic AMP receptor protein positively controls gyrA transcription and alters DNA topology after nutritional upshift in Escherichia coli. J Bacteriol 178:3331–3334
    [Google Scholar]
  32. Gonzalez-Gil G., Bringmann P., Kahmann R. 1996; FIS is a regulator of metabolism in Escherichia coli. Mol Microbiol 22:21–29
    [Google Scholar]
  33. Gonzalez-Gil G., Kahmann R., Muskhelishivili G. 1998; Regulation of crp transcription by oscillation between distinct nucleoprotein complexes. EMBO J 17:2877–2885
    [Google Scholar]
  34. Gosink K. K., Gaal T., Bokal A. J. IV, Gourse R. L. 1996; A positive control mutant of the transcription activator protein FIS. J Bacteriol 178:5182–5187
    [Google Scholar]
  35. Grainger D. C., Hurd D., Goldberg M. D., Busby S. J. 2006; Association of nucleoid proteins with coding and non-coding segments of the Escherichia coli genome. Nucleic Acids Res 34:4642–4652
    [Google Scholar]
  36. Green J., Anjum M. F., Guest J. R. 1996; The ndh-binding protein (Nbp) regulates the ndh gene of Escherichia coli in response to growth phase and is identical to Fis. Mol Microbiol 20:1043–1055
    [Google Scholar]
  37. Grunsky E. C. 2002 R: a Data Analysis and Statistical Programming Environment – an Emerging Tool for the Geosciences Tarrytown, NY: Pergamon Press;
  38. Haffter P., Bickle T. A. 1987; Purification and DNA-binding properties of FIS and Cin, two proteins required for the bacteriophage P1 site-specific recombination system, cin. J Mol Biol 198:579–587
    [Google Scholar]
  39. Hengen P. N., Bartram S. L., Stewart L. E., Schneider T. D. 1997; Information analysis of Fis binding sites. Nucleic Acids Res 25:4994–5002
    [Google Scholar]
  40. Hensel M. 2000; Salmonella pathogenicity island 2. Mol Microbiol 36:1015–1023
    [Google Scholar]
  41. Hirvonen C. A., Ross W., Wozniak C. E., Marasco E., Anthony J. R., Aiyar S. E., Newburn V. H., Gourse R. L. 2001; Contributions of UP elements and the transcription factor FIS to expression from the seven rrn P1 promoters in Escherichia coli. J Bacteriol 183:6305–6314
    [Google Scholar]
  42. Ikaka R., Gentleman R. 1996; R: a language for data analysis and graphics. J Comput Graph Stat 5:299–314
    [Google Scholar]
  43. Jacobson B. A., Fuchs J. A. 1998; Multiple cis-acting sites positively regulate Escherichia coli nrd expression. Mol Microbiol 28:1315–1322
    [Google Scholar]
  44. Johnson R. C., Bruist M. F., Simon M. I. 1986; Host protein requirements for in vitro site-specific DNA inversion. Cell 46:531–539
    [Google Scholar]
  45. Johnson R. C., Ball C. A., Pfeffer D., Simon M. I. 1988; Isolation of the gene encoding the Hin recombinational enhancer binding protein. Proc Natl Acad Sci U S A 85:3484–3488
    [Google Scholar]
  46. Kahmann R., Rudt F., Koch C., Mertens G. 1985; G inversion in bacteriophage Mu DNA is stimulated by a site within the invertase gene and a host factor. Cell 41:771–780
    [Google Scholar]
  47. Keane O. M., Dorman C. J. 2003; The gyr genes of Salmonella enterica serovar Typhimurium are repressed by the factor for inversion stimulation, Fis. Mol Genet Genomics 270:56–65
    [Google Scholar]
  48. Kelly A., Goldberg M. D., Carroll R. K., Danino V., Hinton J. C., Dorman C. J. 2004; A global role for Fis in the transcriptional control of metabolism and type III secretion in Salmonella enterica serovar Typhimurium. Microbiology 150:2037–2053
    [Google Scholar]
  49. La Ragione R. M., Sayers A. R., Woodward M. J. 2000; The role of fimbriae and flagella in the colonization, invasion and persistence of Escherichia coli O78 : K80 in the day-old-chick model. Epidemiol Infect 124:351–363
    [Google Scholar]
  50. Liu X., Matsumura P. 1994; The FlhD/FlhC complex, a transcriptional activator of the Escherichia coli flagellar class II operons. J Bacteriol 176:7345–7351
    [Google Scholar]
  51. Mallik P., Pratt T. S., Beach M. B., Bradley M. D., Undamatla J., Osuna R. 2004; Growth phase-dependent regulation and stringent control of fis are conserved processes in enteric bacteria and involve a single promoter ( fis P) in Escherichia coli. J Bacteriol 186:122–135
    [Google Scholar]
  52. Mallik P., Paul B. J., Rutherford S. T., Gourse R. L., Osuna R. 2006; DksA is required for growth phase-dependent regulation, growth rate-dependent control, and stringent control of fis expression in Escherichia coli. J Bacteriol 188:5775–5782
    [Google Scholar]
  53. McLeod S. M., Xu J., Cramton S. E., Gaal T., Gourse R. L., Johnson R. C. 1999; Localization of amino acids required for Fis to function as a class II transcriptional activator at the RpoS-dependent proP P2 promoter. J Mol Biol 294:333–346
    [Google Scholar]
  54. McLeod S. M., Aiyar S. E., Gourse R. L., Johnson R. C. 2002; The C-terminal domains of the RNA polymerase alpha subunits: contact site with Fis and localization during co-activation with CRP at the Escherichia coli proP P2 promoter. J Mol Biol 316:517–529
    [Google Scholar]
  55. Messer W., Egan B., Gille H., Holz A., Schaefer C., Woelker B. 1991; The complex of oriC DNA with the DnaA initiator protein. Res Microbiol 142:119–125
    [Google Scholar]
  56. Mills D. M., Bajaj V., Lee C. A. 1995; A 40 kb chromosomal fragment encoding Salmonella typhimurium invasion genes is absent from the corresponding region of the Escherichia coli K-12 chromosome. Mol Microbiol 15:749–759
    [Google Scholar]
  57. Minamino T., Macnab R. M. 1999; Components of the Salmonella flagellar export apparatus and classification of export substrates. J Bacteriol 181:1388–1394
    [Google Scholar]
  58. Murray H. D., Schneider D. A., Gourse R. L. 2003; Control of rRNA expression by small molecules is dynamic and nonredundant. Mol Cell 12:125–134
    [Google Scholar]
  59. Muskhelishvili G., Buckle M., Heumann H., Kahmann R., Travers A. A. 1997; FIS activates sequential steps during transcription initiation at a stable RNA promoter. EMBO J 16:3655–3665
    [Google Scholar]
  60. Nasser W., Schneider R., Travers A., Muskhelishvili G. 2001; CRP modulates fis transcription by alternate formation of activating and repressing nucleoprotein complexes. J Biol Chem 276:17878–17886
    [Google Scholar]
  61. Nilsson L., Emilsson V. 1994; Factor for inversion stimulation-dependent growth rate regulation of individual tRNA species in Escherichia coli. J Biol Chem 269:9460–9465
    [Google Scholar]
  62. Nilsson L., Vanet A., Vijgenboom E., Bosch L. 1990; The role of FIS in trans activation of stable RNA operons of E. coli. EMBO J 9:727–734
    [Google Scholar]
  63. Nilsson L., Verbeek H., Hoffmann U., Haupt M., Bosch L. 1992a; Inactivation of the fis gene leads to reduced growth rate. FEMS Microbiol Lett 78:85–88
    [Google Scholar]
  64. Nilsson L., Verbeek H., Vijgenboom E., van Drunen C., Vanet A., Bosch L. 1992b; FIS-dependent trans activation of stable RNA operons of Escherichia coli under various growth conditions. J Bacteriol 174:921–929
    [Google Scholar]
  65. Ninnemann O., Koch C., Kahmann R. 1992; The E. coli fis promoter is subject to stringent control and autoregulation. EMBO J 11:1075–1083
    [Google Scholar]
  66. Numrych T. E., Gumport R. I., Gardner J. F. 1992; Characterization of the bacteriophage lambda excisionase (Xis) protein: the C-terminus is required for Xis-integrase cooperativity but not for DNA binding. EMBO J 11:3797–3806
    [Google Scholar]
  67. Opel M. L., Aeling K. A., Holmes W. M., Johnson R. C., Benham C. J., Hatfield G. W. 2004; Activation of transcription initiation from a stable RNA promoter by a Fis protein-mediated DNA structural transmission mechanism. Mol Microbiol 53:665–674
    [Google Scholar]
  68. Osuna R., Lienau D., Hughes K. T., Johnson R. C. 1995; Sequence, regulation, and functions of fis in Salmonella typhimurium. J Bacteriol 177:2021–2032
    [Google Scholar]
  69. Owens R. M., Pritchard G., Skipp P., Hodey M., Connell S. R., Nierhaus K. H., O'Connor C. D. 2004; A dedicated translation factor controls the synthesis of the global regulator Fis. EMBO J 23:3375–3385
    [Google Scholar]
  70. Paul B. J., Berkmen M. B., Gourse R. L. 2005; DksA potentiates direct activation of amino acid promoters by ppGpp. Proc Natl Acad Sci U S A 102:7823–7828
    [Google Scholar]
  71. Pease A. J., Roa B. R., Luo W., Winkler M. E. 2002; Positive growth rate-dependent regulation of the pdxA, ksgA, and pdxB genes of Escherichia coli K-12. J Bacteriol 184:1359–1369
    [Google Scholar]
  72. Pratt T. S., Steiner T., Feldman L. S., Walker K. A., Osuna R. 1997; Deletion analysis of the fis promoter region in Escherichia coli: antagonistic effects of integration host factor and Fis. J Bacteriol 179:6367–6377
    [Google Scholar]
  73. Ross W., Thompson J. F., Newlands J. T., Gourse R. L. 1990; E. coli Fis protein activates ribosomal RNA transcription in vitro and in vivo. EMBO J 9:3733–3742
    [Google Scholar]
  74. Ryan V. T., Grimwade J. E., Camara J. E., Crooke E., Leonard A. C. 2004; Escherichia coli prereplication complex assembly is regulated by dynamic interplay among Fis, IHF and DnaA. Mol Microbiol 51:1347–1359
    [Google Scholar]
  75. Sambrook J. E., Fritsch E. F., Maniatis T. 1989 Molecular Cloning: a Laboratory Manual, 2nd edn. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
  76. Schneider R., Travers A., Muskhelishvili G. 1997; FIS modulates growth phase-dependent topological transitions of DNA in Escherichia coli. Mol Microbiol 26:519–530
    [Google Scholar]
  77. Schneider R., Travers A., Kutateladze T., Muskhelishvili G. 1999; A DNA architectural protein couples cellular physiology and DNA topology in Escherichia coli. Mol Microbiol 34:953–964
    [Google Scholar]
  78. Schneider R., Travers A., Muskhelishvili G. 2000; The expression of the Escherichia coli fis gene is strongly dependent on the superhelical density of DNA. Mol Microbiol 38:167–175
    [Google Scholar]
  79. Schneider R., Lurz R., Luder G., Tolksdorf C., Travers A., Muskhelishvili G. 2001; An architectural role of the Escherichia coli chromatin protein FIS in organising DNA. Nucleic Acids Res 29:5107–5114
    [Google Scholar]
  80. Shin D., Cho N., Heu S., Ryu S. 2003; Selective regulation of ptsG expression by Fis. Formation of either activating or repressing nucleoprotein complex in response to glucose. J Biol Chem 278:14776–14781
    [Google Scholar]
  81. Skoko D., Yan J., Johnson R. C., Marko J. F. 2005; Low-force DNA condensation and discontinuous high-force decondensation reveal a loop-stabilizing function of the protein Fis. Phys Rev Lett 95:208101
    [Google Scholar]
  82. Slany R. K., Kersten H. 1992; The promoter of the tgt/sec operon in Escherichia coli is preceded by an upstream activation sequence that contains a high affinity FIS binding site. Nucleic Acids Res 20:4193–4198
    [Google Scholar]
  83. Smulski D. R., Huang L. L., McCluskey M. P., Reeve M. J., Vollmer A. C., Van Dyk T. K., LaRossa R. A. 2001; Combined, functional genomic-biochemical approach to intermediary metabolism: interaction of acivicin, a glutamine amidotransferase inhibitor, with Escherichia coli K-12. J Bacteriol 183:3353–3364
    [Google Scholar]
  84. Sokal R. R., Rohlf F. J. 1995 Biometry: the Principles and Practice of Statistics in Biological Research New York: W. H. Freeman;
  85. Stecher B., Hapfelmeier S., Muller C., Kremer M., Stallmach T., Hardt W. D. 2004; Flagella and chemotaxis are required for efficient induction of Salmonella enterica serovar Typhimurium colitis in streptomycin-pretreated mice. Infect Immun 72:4138–4150
    [Google Scholar]
  86. Thompson J. F., Moitoso de Vargas L., Koch C., Kahmann R., Landy A. 1987; Cellular factors couple recombination with growth phase: characterization of a new component in the lambda site-specific recombination pathway. Cell 50:901–908
    [Google Scholar]
  87. Travers A., Schneider R., Muskhelishvili G. 2001; DNA supercoiling and transcription in Escherichia coli: the FIS connection. Biochimie 83:213–217
    [Google Scholar]
  88. Tupper A. E., Owen-Hughes T. A., Ussery D. W., Santos D. S., Ferguson D. J., Sidebotham J. M., Hinton J. C., Higgins C. F. 1994; The chromatin-associated protein H-NS alters DNA topology in vitro. EMBO J 13:258–268
    [Google Scholar]
  89. Verbeek H., Nilsson L., Bosch L. 1992; The mechanism of trans-activation of the Escherichia coli operon thrU( tufB) by the protein FIS. A model. Nucleic Acids Res 20:4077–4081
    [Google Scholar]
  90. Walker K. A., Atkins C. L., Osuna R. 1999; Functional determinants of the Escherichia coli fis promoter: roles of −35, −10, and transcription initiation regions in the response to stringent control and growth phase-dependent regulation. J Bacteriol 181:1269–1280
    [Google Scholar]
  91. Walker K. A., Mallik P., Pratt T. S., Osuna R. 2004; The Escherichia coli fis promoter is regulated by changes in the levels of its transcription initiation nucleotide CTP. J Biol Chem 279:50818–50828
    [Google Scholar]
  92. Weinreich M. D., Reznikoff W. S. 1992; Fis plays a role in Tn 5 and IS 50 transposition. J Bacteriol 174:4530–4537
    [Google Scholar]
  93. Weinstein-Fischer D., Elgrably-Weiss M., Altuvia S. 2000; Escherichia coli response to hydrogen peroxide: a role for DNA supercoiling, topoisomerase I and Fis. Mol Microbiol 35:1413–1420
    [Google Scholar]
  94. Winer J., Jung C. K., Shackel I., Williams P. M. 1999; Development and validation of real-time quantitative reverse transcriptase-polymerase chain reaction for monitoring gene expression in cardiac myocytes in vitro. Anal Biochem 270:41–49
    [Google Scholar]
  95. Wold S., Crooke E., Skarstad K. 1996; The Escherichia coli Fis protein prevents initiation of DNA replication from oriC in vitro. Nucleic Acids Res 24:3527–3532
    [Google Scholar]
  96. Wu F., Wu J., Ehley J., Filutowicz M. 1996; Preponderance of Fis-binding sites in the R6K gamma origin and the curious effect of the penicillin resistance marker on replication of this origin in the absence of Fis. J Bacteriol 178:4965–4974
    [Google Scholar]
  97. Xu J., Johnson R. C. 1995a; Fis activates the RpoS-dependent stationary-phase expression of proP in Escherichia coli. J Bacteriol 177:5222–5231
    [Google Scholar]
  98. Xu J., Johnson R. C. 1995b; aldB, an RpoS-dependent gene in Escherichia coli encoding an aldehyde dehydrogenase that is repressed by Fis and activated by CRP. J Bacteriol 177:3166–3175
    [Google Scholar]
  99. Xu J., Johnson R. C. 1995c; Identification of genes negatively regulated by Fis: Fis and RpoS comodulate growth-phase-dependent gene expression in Escherichia coli. J Bacteriol 177:938–947
    [Google Scholar]
  100. Zhi H., Wang X., Cabrera J. E., Johnson R. C., Jin D. J. 2003; Fis stabilizes the interaction between RNA polymerase and the ribosomal promoter rrnB P1, leading to transcriptional activation. J Biol Chem 278:47340–47349
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.2007/008565-0
Loading
/content/journal/micro/10.1099/mic.0.2007/008565-0
Loading

Data & Media loading...

Most cited Most Cited RSS feed