Phage display cDNA cloning and expression analysis of hydrophobins from the entomopathogenic fungus () Free

Abstract

Hydrophobins are small amphipathic proteins that function in a broad range of growth and developmental processes in fungi. They are involved in the formation of aerial structures, the attachment of fungal cells to surfaces, and act in signalling in response to surface cues and pathogenesis. is an important entomopathogenic fungus used as an arthropod biological control agent. To examine the feasibility of using phage display technology to clone cDNAs encoding hydrophobins, biopanning experiments were performed using a variety of affinity resins, including ,′-diacetylchitobiose-, fucose-, lactose-, maltose- and melibiose-coupled agarose beads. After five rounds of iterative biopanning, cDNAs corresponding to two (class I) hydrophobins were selectively enriched using melibiose- or lactose-coupled agarose beads. Expression analysis revealed that the gene was expressed in all samples tested, including aerial conidia, blastospores, submerged conidia, and cells sporulating on chitin and insect cuticle, with expression peaking in growing mycelia. In contrast, the gene was not appreciably expressed in any of the single-cell types (aerial conidia, blastospores and submerged conidia), but was constitutively expressed in growing mycelia and when cells were sporulating on chitin and insect cuticle. MS fingerprinting of an ∼10 kDa protein found in boiling SDS-insoluble, trifluoroacetic acid-soluble extracts from aerial conidia identified the major component of the rodlet layer to be the gene product. These results reveal the differential regulation of the isolated hydrophobins and indicate that phage display represents a novel approach to cDNA cloning of hydrophobins.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.2007/008532-0
2007-10-01
2024-03-29
Loading full text...

Full text loading...

/deliver/fulltext/micro/153/10/3438.html?itemId=/content/journal/micro/10.1099/mic.0.2007/008532-0&mimeType=html&fmt=ahah

References

  1. Ausubel F. M., Brent R., Kingston R. E., Moore D. D., Seidman J. G., Smith J. A., Struhl K. 1996 Current Protocols in Molecular Biology New York: Wiley Science;
  2. Beckerman J. L., Ebbole D. J. 1996; MPG1 , a gene encoding a fungal hydrophobin of Magnaporthe grisea , is involved in surface recognition. Mol Plant Microbe Interact 9:450–456
    [Google Scholar]
  3. Bell-Pedersen D., Dunlap J. C., Loros J. J. 1992; The Neurospora circadian clock-controlled gene, ccg-2 , is allelic to eas and encodes a fungal hydrophobin required for formation of the conidial rodlet layer. Genes Dev 6:2382–2394
    [Google Scholar]
  4. Bidochka M. J., St Leger R. J., Joshi L., Roberts D. W. 1995a; An inner cell wall protein (cwp1) from conidia of the entomopathogenic fungus Beauveria bassiana . Microbiology 141:1075–1080
    [Google Scholar]
  5. Bidochka M. J., St Leger R. J., Joshi L., Roberts D. W. 1995b; The rodlet layer from aerial and submerged conidia of the entomopathogenic fungus Beauveria bassiana contains hydrophobin. Mycol Res 99:403–406
    [Google Scholar]
  6. Blanford S., Chan B. H., Jenkins N., Sim D., Turner R. J., Read A. F., Thomas M. B. 2005; Fungal pathogen reduces potential for malaria transmission. Science 308:1638–1641
    [Google Scholar]
  7. Brownbridge M., Costa S., Jaronski S. T. 2001; Effects of in vitro passage of Beauveria bassiana on virulence to Bemisia argentifolii . J Invertebr Pathol 77:280–283
    [Google Scholar]
  8. Cho E. M., Boucias D., Keyhani N. O. 2006a; EST analysis of cDNA libraries from the entomopathogenic fungus Beauveria ( Cordyceps ) bassiana . II. Fungal cells sporulating on chitin and producing oosporein. Microbiology 152:2855–2864
    [Google Scholar]
  9. Cho E. M., Liu L., Farmerie W., Keyhani N. O. 2006b; EST analysis of cDNA libraries from the entomopathogenic fungus Beauveria ( Cordyceps ) bassiana . I. Evidence for stage-specific gene expression in aerial conidia, in vitro blastospores and submerged conidia. Microbiology 152:2843–2854
    [Google Scholar]
  10. Clarkson J. M., Charnley A. K. 1996; New insights into the mechanisms of fungal pathogenesis in insects. Trends Microbiol 4:197–203
    [Google Scholar]
  11. Corvis Y., Walcarius A., Rink R., Mrabet N. T., Rogalska E. 2005; Preparing catalytic surfaces for sensing applications by immobilizing enzymes via hydrophobin layers. Anal Chem 77:1622–1630
    [Google Scholar]
  12. Cruz L. P., Gaitan A. L., Gongora C. E. 2006; Exploiting the genetic diversity of Beauveria bassiana for improving the biological control of the coffee berry borer through the use of strain mixtures. Appl Microbiol Biotechnol 71:918–926
    [Google Scholar]
  13. Danner S., Belasco J. G. 2001; T7 phage display: a novel genetic selection system for cloning RNA-binding proteins from cDNA libraries. Proc Natl Acad Sci U S A 98:12954–12959
    [Google Scholar]
  14. Ebbole D. J. 1997; Hydrophobins and fungal infection of plants and animals. Trends Microbiol 5:405–408
    [Google Scholar]
  15. Fuchs U., Czymmek K. J., Sweigard J. A. 2004; Five hydrophobin genes in Fusarium verticillioides include two required for microconidial chain formation. Fungal Genet Biol 41:852–864
    [Google Scholar]
  16. Girardin H., Paris S., Rault J., Bellon-Fontaine M. N., Latgé J. P. 1999; The role of the rodlet structure on the physicochemical properties of Aspergillus conidia. Lett Appl Microbiol 29:364–369
    [Google Scholar]
  17. Holder D. J., Keyhani N. O. 2005; Adhesion of the entomopathogenic fungus Beauveria ( Cordyceps ) bassiana to substrata. Appl Environ Microbiol 71:5260–5266
    [Google Scholar]
  18. Kazmierczak P., Pfeiffer P., Zhang L., Van Alfen N. K. 1996; Transcriptional repression of specific host genes by the mycovirus Cryphonectria hypovirus 1. J Virol 70:1137–1142
    [Google Scholar]
  19. Kazmierczak P., Kim D. H., Turina M., Van Alfen N. K. 2005; A hydrophobin of the chestnut blight fungus, Cryphonectria parasitica , is required for stromal pustule eruption. Eukaryot Cell 4:931–936
    [Google Scholar]
  20. Kershaw M. J., Talbot N. J. 1998; Hydrophobins and repellents: proteins with fundamental roles in fungal morphogenesis. Fungal Genet Biol 23:18–33
    [Google Scholar]
  21. Kirkland B. H., Westwood G. S., Keyhani N. O. 2004; Pathogenicity of entomopathogenic fungi Beauveria bassiana and Metarhizium anisopliae to Ixodidae tick species Dermacentor variabilis, Rhipicephalus sanguineus , and Ixodes scapularis . J Med Entomol 41:705–711
    [Google Scholar]
  22. Klinger E., Groden E., Drummond F. 2006; Beauveria bassiana horizontal infection between cadavers and adults of the Colorado potato beetle, Leptinotarsa decemlineata (Say. Environ Entomol 35:992–1000
    [Google Scholar]
  23. Kossowska B., Lamer-Zarawska E., Olczak M., Katnik-Prastowska I. 1999; Lectin from Beauveria bassiana mycelium recognizes Thomsen–Friedenreich antigen and related structures. Comp Biochem Physiol B Biochem Mol Biol 123:23–31
    [Google Scholar]
  24. Kwan A. H., Winefield R. D., Sunde M., Matthews J. M., Haverkamp R. G., Templeton M. D., Mackay J. P. 2006; Structural basis for rodlet assembly in fungal hydrophobins. Proc Natl Acad Sci U S A 103:3621–3626
    [Google Scholar]
  25. Kyte J., Doolittle R. F. 1982; A simple method for displaying the hydrophobic character of a protein. J Mol Biol 157:105–132
    [Google Scholar]
  26. Leathers T. D., Gupta S. C., Alexander N. J. 1993; Mycopesticides: status, challenges, and potential. J Ind Microbiol 12:69–75
    [Google Scholar]
  27. Linder M. B., Szilvay G. R., Nakari-Setala T., Penttila M. E. 2005; Hydrophobins: the protein-amphiphiles of filamentous fungi. FEMS Microbiol Rev 29:877–896
    [Google Scholar]
  28. Lugones L. G., Bosscher J. S., Scholtmeyer K., de Vries O. M., Wessels J. G. 1996; An abundant hydrophobin (ABH1) forms hydrophobic rodlet layers in Agaricus bisporus fruiting bodies. Microbiology 142:1321–1329
    [Google Scholar]
  29. Marti G. A., Scorsetti A. C., Siri A., Lastra C. C. 2005; Isolation of Beauveria bassiana (Bals.) Vuill. (Deuteromycotina: Hyphomycetes) from the Chagas disease vector, Triatoma infestans (Hemiptera: Reduviidae) in Argentina. Mycopathologia 159:389–391
    [Google Scholar]
  30. Maurer P., Couteaudier Y., Girard P. A., Bridge P. D., Riba G. 1997; Genetic diversity of Beauveria bassiana and relatedness to host insect range. Mycol Res 101:159–164
    [Google Scholar]
  31. McCabe P. M., Van Alfen N. K. 1999; Secretion of cryparin, a fungal hydrophobin. Appl Environ Microbiol 65:5431–5435
    [Google Scholar]
  32. McCoy C. W. 1990; Entomogenous fungi as microbial pestidides. In New Directions in Biological Control pp 139–159 Edited by Baker R. R., Dunn P. E. New York: A.R. Liss;
    [Google Scholar]
  33. Mullen L. M., Nair S. P., Ward J. M., Rycroft A. N., Henderson B. 2006; Phage display in the study of infectious diseases. Trends Microbiol 14:141–147
    [Google Scholar]
  34. Nishizawa H., Miyazaki Y., Kaneko S., Shishido K. 2002; Distribution of hydrophobin 1 gene transcript in developing fruiting bodies of Lentinula edodes . Biosci Biotechnol Biochem 66:1951–1954
    [Google Scholar]
  35. Paschke M. 2006; Phage display systems and their applications. Appl Microbiol Biotechnol 70:2–11
    [Google Scholar]
  36. Rhyner C., Weichel M., Fluckiger S., Hemmann S., Kleber-Janke T., Crameri R. 2004; Cloning allergens via phage display. Methods 32:212–218
    [Google Scholar]
  37. Scholtmeijer K., Janssen M. I., Gerssen B., de Vocht M. L., van Leeuwen B. M., van Kooten T. G., Wosten H. A., Wessels J. G. 2002; Surface modifications created by using engineered hydrophobins. Appl Environ Microbiol 68:1367–1373
    [Google Scholar]
  38. Scholtmeijer K., Janssen M. I., van Leeuwen M. B., van Kooten T. G., Hektor H., Wosten H. A. 2004; The use of hydrophobins to functionalize surfaces. Biomed Mater Eng 14:447–454
    [Google Scholar]
  39. Sergeeva A., Kolonin M. G., Molldrem J. J., Pasqualini R., Arap W. 2006; Display technologies: application for the discovery of drug and gene delivery agents. Adv Drug Deliv Rev 58:1622–1654
    [Google Scholar]
  40. St Leger R. J., Staples R. C., Roberts D. W. 1992; Cloning and regulatory analysis of starvation-stress gene, ssgA , encoding a hydrophobin-like protein from the entomopathogenic fungus, Metarhizium anisopliae . Gene 120:119–124
    [Google Scholar]
  41. Talbot N. J. 1999; Fungal biology. Coming up for air and sporulation. Nature 398:295–296
    [Google Scholar]
  42. Talbot N. 2001; Nucleic acid isolation and analysis. In Molecular and Cellular Biology of Filamentous Fungi pp 23–26 Edited by Talbot N. Oxford: Oxford University Press;
    [Google Scholar]
  43. Talbot N. J., Ebbole D. J., Hamer J. E. 1993; Identification and characterization of MPG1 , a gene involved in pathogenicity from the rice blast fungus Magnaporthe grisea . Plant Cell 5:1575–1590
    [Google Scholar]
  44. van Wetter M. A., Wosten H. A., Wessels J. G. 2000; SC3 and SC4 hydrophobins have distinct roles in formation of aerial structures in dikaryons of Schizophyllum commune . Mol Microbiol 36:201–210
    [Google Scholar]
  45. Wessels J. G. 1997; Hydrophobins: proteins that change the nature of the fungal surface. Adv Microb Physiol 38:1–45
    [Google Scholar]
  46. Wessels J. G. 1999; Fungi in their own right. Fungal Genet Biol 27:134–145
    [Google Scholar]
  47. Wosten H. A., de Vocht M. L. 2000; Hydrophobins, the fungal coat unravelled. Biochim Biophys Acta 146979–86
    [Google Scholar]
  48. Wosten H., De Vries O., Wessels J. 1993; Interfacial self-assembly of a fungal hydrophobin into a hydrophobic rodlet layer. Plant Cell 5:1567–1574
    [Google Scholar]
  49. Yamamoto M., Kominato Y., Yamamoto F. 1999; Phage display cDNA cloning of protein with carbohydrate affinity. Biochem Biophys Res Commun 255:194–199
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.2007/008532-0
Loading
/content/journal/micro/10.1099/mic.0.2007/008532-0
Loading

Data & Media loading...

Most cited Most Cited RSS feed