1887

Abstract

Marked differences in surface characteristics were observed among three types of single-cell propagules produced by the entomopathogenic fungus . Atomic force microscopy (AFM) revealed the presence of bundles or fascicles in aerial conidia absent from blastospores and submerged conidia. Contact angle measurements using polar and apolar test liquids placed on cell layers were used to calculate surface tension values and the free energies of interaction of the cell types with surfaces. These analyses indicated that the cell surfaces of aerial conidia were hydrophobic, whereas those of blastospores and submerged conidia were hydrophilic. Zeta potential determinations of the electrostatic charge distribution across the surface of the cells varied from +22 to −30 mV for 16-day aerial conidia at pH values ranging from 3 to 9, while the net surface charge ranged from +10 to −13 mV for submerged conidia, with much less variation observed for blastospores, +4 to −4 mV, over the same pH range. Measurements of hydrophobicity using microbial adhesion to hydrocarbons (MATH) indicated that the surfaces of aerial conidia were hydrophobic, and those of blastospores hydrophilic, whereas submerged conidia displayed cell surface characteristics on the borderline between hydrophobic and hydrophilic. Insect pathology assays using tobacco budworm () larvae revealed some variation in virulence among aerial conidia, blastospores and submerged conidia, using both topical application and haemocoel injection of the fungal cells.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.2007/008524-0
2007-10-01
2019-10-18
Loading full text...

Full text loading...

/deliver/fulltext/micro/153/10/3448.html?itemId=/content/journal/micro/10.1099/mic.0.2007/008524-0&mimeType=html&fmt=ahah

References

  1. Alves, S. B., Rossi, L. S., Lopes, R. B., Tamai, M. A. & Pereira, R. M. ( 2002; ). Beauveria bassiana yeast phase on agar medium and its pathogenicity against Diatraea saccharalis (Lepidoptera: Crambidae) and Tetranychus urticae (Acari: Tetranychidae). J Invertebr Pathol 81, 70–77.[CrossRef]
    [Google Scholar]
  2. Bidochka, M. J., Pfeifer, T. A. & Khachatourians, G. G. ( 1987; ). Development of the entomopathogenic fungus Beauveria bassiana in liquid cultures. Mycopathologia 99, 77–83.[CrossRef]
    [Google Scholar]
  3. Bing, L. A. & Lewis, L. C. ( 1991; ). Suppression of Ostrinia nubilalis (Hubner) (Lepidoptera: Pyralidae) by endophytic Beauveria bassiana (Balsamo) Vuillemin. Environ Entomol 20, 1207–1211.[CrossRef]
    [Google Scholar]
  4. Bing, L. A. & Lewis, L. C. ( 1992; ). Endophytic Beauveria bassiana (Balsamo) Vuillemin in corn: the influence of the plant growth stage and Ostrinia nubilalis (Hubner). Biocontrol Sci Technol 2, 39–47.[CrossRef]
    [Google Scholar]
  5. Boucias, D. & Pendland, J. ( 1991; ). Attachment of mycopathogens to cuticle. In The Fungal Spore and Disease Initiation in Plants and Animals. Edited by G. T. Cole & H. C. Hoch. New York: Plenum Press.
  6. Boucias, D. G., Pendland, J. C. & Latge, J. P. ( 1988; ). Nonspecific factors involved in attachment of entomopathogenic deuteromycetes to host insect cuticle. Appl Environ Microbiol 54, 1795–1805.
    [Google Scholar]
  7. Charnley, A. K. & St Leger, R. ( 1991; ). The role of cuticle degrading enzymes in fungal pathogenesis of insects. In The Fungal Spore and Disease Initiation, pp. 267–286. Edited by G. T. Cole & H. C. Hoch. New York: Plenum Press.
  8. Cho, E. M., Liu, L., Farmerie, W. & Keyhani, N. O. ( 2006; ). EST analysis of cDNA libraries from the entomopathogenic fungus Beauveria (Cordyceps) bassiana. I. Evidence for stage-specific gene expression in aerial conidia, in vitro blastospores and submerged conidia. Microbiology 152, 2843–2854.[CrossRef]
    [Google Scholar]
  9. Drozd, C. & Schwartzbrod, J. ( 1996; ). Hydrophobic and electrostatic cell surface properties of Cryptosporidium parvum. Appl Environ Microbiol 62, 1227–1232.
    [Google Scholar]
  10. Dufrene, Y. F. ( 2000; ). Direct characterization of the physicochemical properties of fungal spores using functionalized AFM probes. Biophys J 78, 3286–3291.[CrossRef]
    [Google Scholar]
  11. Dunlap, C. A., Biresaw, G. & Jackson, M. A. ( 2005; ). Hydrophobic and electrostatic cell surface properties of blastospores of the entomopathogenic fungus Paecilomyces fumosoroseus. Colloids Surf B Biointerfaces 46, 261–266.[CrossRef]
    [Google Scholar]
  12. Dynesen, J. & Nielsen, J. ( 2003; ). Surface hydrophobicity of Aspergillus nidulans conidiospores and its role in pellet formation. Biotechnol Prog 19, 1049–1052.[CrossRef]
    [Google Scholar]
  13. El-Sayed, G. N., Ignoffo, C. M., Leathers, T. D. & Gupta, S. C. ( 1993; ). Effects of cuticle source and concentration on the expression of hydrolytic enzymes by an entomopathogenic fungus, Nomuraea rileyi. Mycopathologia 122, 149–152.[CrossRef]
    [Google Scholar]
  14. Fargues, J. ( 1984; ). Adhesion of the fungal spore to the insect cuticle in relation to pathogenicity. In Infection Processes of Fungi, pp. 90–110. Edited by D. W. Roberts & J. R. Aist. New York: Rockefeller Foundation.
  15. Fuguet, R., Théraud, M. & Vey, A. ( 2004; ). Production in vitro of toxic macromolecules by strains of Beauveria bassiana, and purification of a chitosanase-like protein secreted by a melanizing isolate. Comp Biochem Physiol C Toxicol Pharmacol 138, 149–161.[CrossRef]
    [Google Scholar]
  16. Girardin, H., Paris, S., Rault, J., Bellon-Fontaine, M. N. & Latge, J. P. ( 1999; ). The role of the rodlet structure on the physicochemical properties of Aspergillus conidia. Lett Appl Microbiol 29, 364–369.[CrossRef]
    [Google Scholar]
  17. Greene, G. L., Leppla, N. C. & Dickerson, W. A. ( 1976; ). Velvetbean caterpillar- (Leipidoptera, Noctuidae) rearing procedure and artificial medium. J Econ Entomol 69, 487–488.[CrossRef]
    [Google Scholar]
  18. Hazen, K. C. ( 2004; ). Relationship between expression of cell surface hydrophobicity protein 1 (CSH1p) and surface hydrophobicity properties of Candida dubliniensis. Curr Microbiol 48, 447–451.
    [Google Scholar]
  19. Hegedus, D. D., Bidochka, M. J. & Khachatourians, G. G. ( 1990; ). Beauveria bassiana submerged conidia production in a defined medium containing chitin, two hexosamines or glucose. Appl Microbiol Biotechnol 33, 641–647.[CrossRef]
    [Google Scholar]
  20. Hegedus, D. D., Bidochka, M. J., Miranpuri, G. S. & Khachatourians, G. G. ( 1992; ). A comparison of the virulence, stability and cell-wall-surface characteristics of three spore types produced by the entomopathogenic fungus Beauveria bassiana. Appl Microbiol Biotechnol 36, 785–789.
    [Google Scholar]
  21. Holder, D. J. & Keyhani, N. O. ( 2005; ). Adhesion of the entomopathogenic fungus Beauveria (Cordyceps) bassiana to substrata. Appl Environ Microbiol 71, 5260–5266.[CrossRef]
    [Google Scholar]
  22. Jeffs, L. B., Xavier, I. J., Matai, R. E. & Khachatourians, G. G. ( 1999; ). Relationships between fungal spore morphologies and surface properties for entomopathogenic members of the genera Beauveria, Metarhizium, Paecilomyces, Tolypocladium, and Verticillium. Can J Microbiol 45, 936–948.[CrossRef]
    [Google Scholar]
  23. Kirkland, B. H., Westwood, G. S. & Keyhani, N. O. ( 2004a; ). Pathogenicity of entomopathogenic fungi Beauveria bassiana and Metarhizium anisopliae to Ixodidae tick species Dermacentor variabilis, Rhipicephalus sanguineus, and Ixodes scapularis. J Med Entomol 41, 705–711.[CrossRef]
    [Google Scholar]
  24. Kirkland, B. H., Keyhani, N. O. & Cho, E.-M. ( 2004b; ). Differential susceptibility of Amblyomma maculatum and Amblyomma americanum (Acari: Ixodidea) to the entomopathogenic fungi Beauveria bassiana and Metarhizium anisopliae. Biol Control 31, 414–421.[CrossRef]
    [Google Scholar]
  25. Kirkland, B. H., Eisa, A. & Keyhani, N. O. ( 2005; ). Oxalic acid as a fungal acaracidal virulence factor. J Med Entomol 42, 346–351.[CrossRef]
    [Google Scholar]
  26. Leathers, T. D., Gupta, S. C. & Alexander, N. J. ( 1993; ). Mycopesticides: status, challenges, and potential. J Ind Microbiol 12, 69–75.[CrossRef]
    [Google Scholar]
  27. Leckband, D. & Israelachvili, J. ( 2001; ). Intermolecular forces in biology. Q Rev Biophys 34, 105–267.[CrossRef]
    [Google Scholar]
  28. Ma, H., Snook, L. A., Kaminskyj, S. G. & Dahms, T. E. ( 2005; ). Surface ultrastructure and elasticity in growing tips and mature regions of Aspergillus hyphae describe wall maturation. Microbiology 151, 3679–3688.[CrossRef]
    [Google Scholar]
  29. Ma, H., Snook, L. A., Tian, C., Kaminskyj, S. G. & Dahms, T. E. ( 2006; ). Fungal surface remodelling visualized by atomic force microscopy. Mycol Res 110, 879–886.[CrossRef]
    [Google Scholar]
  30. McCoy, C. W. ( 1990; ). Entomogenous fungi as microbial pestidides. In New Directions in Biological Control, pp. 139–159. Edited by R. R. Baker & P. E. Dunn. New York: A. R. Liss.
  31. Munoz, G. A., Agosin, E., Cotoras, M., Sanmartin, R. & Volpe, D. ( 1995; ). Comparison of aerial and submerged spore properties for Trichoderma harzianum. FEMS Microbiol Lett 125, 63–69.[CrossRef]
    [Google Scholar]
  32. Paris, S., Debeaupuis, J. P., Crameri, R., Carey, M., Charles, F., Prevost, M. C., Schmitt, C., Philippe, B. & Latge, J. P. ( 2003; ). Conidial hydrophobins of Aspergillus fumigatus. Appl Environ Microbiol 69, 1581–1588.[CrossRef]
    [Google Scholar]
  33. Pendland, J. C., Hung, S. Y. & Boucias, D. G. ( 1993; ). Evasion of host defense by in vivo-produced protoplast-like cells of the insect mycopathogen Beauveria bassiana. J Bacteriol 175, 5962–5969.
    [Google Scholar]
  34. Reithinger, R., Davies, C. R., Cadena, H. & Alexander, B. ( 1997; ). Evaluation of the fungus Beauveria bassiana as a potential biological control agent against phlebotomine sand flies in Colombian coffee plantations. J Invertebr Pathol 70, 131–135.[CrossRef]
    [Google Scholar]
  35. Samish, M., Ginsberg, H. & Glazer, I. ( 2004; ). Biological control of ticks. Parasitology 129 (Suppl.), S389–S403.[CrossRef]
    [Google Scholar]
  36. Scholte, E. J., Ng'habi, K., Kihonda, J., Takken, W., Paaijmans, K., Abdulla, S., Killeen, G. F. & Knols, B. G. ( 2005; ). An entomopathogenic fungus for control of adult African malaria mosquitoes. Science 308, 1641–1642.[CrossRef]
    [Google Scholar]
  37. Singleton, D. R., Fidel, P. L., Wozniak, K. L. & Hazen, K. C. ( 2005; ). Contribution of cell surface hydrophobicity protein I (Csh1p) to virulence of hydrophobic Candida albicans serotype A cells. FEMS Microbiol Lett 244, 373–377.[CrossRef]
    [Google Scholar]
  38. Smith, S. N., Chohan, R., Armstrong, R. A. & Whipps, J. M. ( 1998; ). Hydrophobicity and surface electrostatic charge of conidia of the mycoparasite Coniothyrium minitans. Mycol Res 102, 243–249.[CrossRef]
    [Google Scholar]
  39. Strevett, K. A. & Chen, G. ( 2003; ). Microbial surface thermodynamics and applications. Res Microbiol 154, 329–335.[CrossRef]
    [Google Scholar]
  40. Stringer, M. A. & Timberlake, W. E. ( 1995; ). dewA encodes a fungal hydrophobin component of the Aspergillus spore wall. Mol Microbiol 16, 33–44.[CrossRef]
    [Google Scholar]
  41. Talaei-Hassanloui, R., Kharazi-Pakdel, A., Goettel, M. & Mozaffari, J. ( 2006; ). Variation in virulence of Beauveria bassiana isolates and its relatedness to some morphological characteristics. Biocontrol Sci Technol 16, 525–534.[CrossRef]
    [Google Scholar]
  42. Thau, N., Monod, M., Crestani, B., Rolland, C., Tronchin, G., Latgé, J. P. & Paris, S. ( 1994; ). Rodletless mutants of Aspergillus fumigatus. Infect Immun 62, 4380–4388.
    [Google Scholar]
  43. Thomas, K. C., Khachatourians, G. G. & Ingledew, W. M. ( 1987; ). Production and properties of Beauveria bassiana conidia cultivated in submerged culture. Can J Microbiol 33, 12–20.[CrossRef]
    [Google Scholar]
  44. van Oss, C. J., Chaudhury, M. K. & Good, R. J. ( 1987; ). Monopolar surfaces. Adv Colloid Interface Sci 28, 35–64.[CrossRef]
    [Google Scholar]
  45. Viaud, M., Couteaudier, Y. & Riba, G. ( 1998; ). Molecular analysis of hypervirulent somatic hybrids of the entomopathogenic fungi Beauveria bassiana and Beauveria sulfurescens. Appl Environ Microbiol 64, 88–93.
    [Google Scholar]
  46. Wilson, W. W., Wade, M. M., Holman, S. C. & Champlin, F. R. ( 2001; ). Status of methods for assessing bacterial cell surface charge properties based on zeta potential measurements. J Microbiol Methods 43, 153–164.[CrossRef]
    [Google Scholar]
  47. Zhao, L., Schaefer, D. & Marten, M. R. ( 2005; ). Assessment of elasticity and topography of Aspergillus nidulans spores via atomic force microscopy. Appl Environ Microbiol 71, 955–960.[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.2007/008524-0
Loading
/content/journal/micro/10.1099/mic.0.2007/008524-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error