1887

Abstract

is an intracellular pathogen that is able to avoid destruction by host immune defences. Exported proteins of , which include proteins localized to the bacterial surface or secreted into the extracellular environment, are ideally situated to interact with host factors. As a result, these proteins are attractive candidates for virulence factors, drug targets and vaccine components. Here we describe a -lactamase reporter system capable of identifying exported proteins of during growth in host cells. Because -lactams target bacterial cell-wall synthesis, -lactamases must be exported beyond the cytoplasm to protect against these drugs. When used in protein fusions, -lactamase can report on the subcellular location of another protein as measured by protection from -lactam antibiotics. Here we demonstrate that a truncated TEM-1 -lactamase lacking a signal sequence for export (′BlaTEM-1) can be used in this manner directly in a mutant strain of lacking the major -lactamase, BlaC. The ′BlaTEM-1 reporter conferred -lactam resistance when fused to both Sec and Tat export signal sequences. We further demonstrate that -lactamase fusion proteins report on protein export while is growing in THP-1 macrophage-like cells. This genetic system should facilitate the study of proteins exclusively exported in the host environment by intracellular .

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.2007/008516-0
2007-10-01
2020-03-28
Loading full text...

Full text loading...

/deliver/fulltext/micro/153/10/3350.html?itemId=/content/journal/micro/10.1099/mic.0.2007/008516-0&mimeType=html&fmt=ahah

References

  1. Barcia-Macay M., Seral C., Mingeot-Leclercq M. P., Tulkens P. M., Van Bambeke F.. 2006; Pharmacodynamic evaluation of the intracellular activities of antibiotics against Staphylococcus aureus in a model of THP-1 macrophages. Antimicrob Agents Chemother50:841–851
    [Google Scholar]
  2. Braunstein M., Griffin T. I., Kriakov J. I., Friedman S. T., Grindley N. D., Jacobs W. R. Jr. 2000; Identification of genes encoding exported Mycobacterium tuberculosis proteins using a Tn 552 phoA in vitro transposition system. J Bacteriol182:2732–2740
    [Google Scholar]
  3. Braunstein M., Brown A. M., Kurtz S., Jacobs W. R. Jr. 2001; Two nonredundant SecA homologues function in mycobacteria. J Bacteriol183:6979–6990
    [Google Scholar]
  4. Braunstein M., Espinosa B. J., Chan J., Belisle J. T., Jacobs W. R. Jr. 2003; SecA2 functions in the secretion of superoxide dismutase A and in the virulence of Mycobacterium tuberculosis . Mol Microbiol48:453–464
    [Google Scholar]
  5. Broome-Smith J. K., Tadayyon M., Zhang Y.. 1990; Beta-lactamase as a probe of membrane protein assembly and protein export. Mol Microbiol4:1637–1644
    [Google Scholar]
  6. Carryn S., Van Bambeke F., Mingeot-Leclercq M. P., Tulkens P. M.. 2003; Activity of beta-lactams (ampicillin, meropenem), gentamicin, azithromycin and moxifloxacin against intracellular Listeria monocytogenes in a 24 h THP-1 human macrophage model. J Antimicrob Chemother51:1051–1052
    [Google Scholar]
  7. Charpentier X., Oswald E.. 2004; Identification of the secretion and translocation domain of the enteropathogenic and enterohemorrhagic Escherichia coli effector Cif, using TEM-1 beta-lactamase as a new fluorescence-based reporter. J Bacteriol186:5486–5495
    [Google Scholar]
  8. Chubb A. J., Woodman Z. L., da Silva Tatley F. M., Hoffmann H. J., Scholle R. R., Ehlers M. R.. 1998; Identification of Mycobacterium tuberculosis signal sequences that direct the export of a leaderless beta-lactamase gene product in Escherichia coli . Microbiology144:1619–1629
    [Google Scholar]
  9. Datta N., Kontomichalou P.. 1965; Penicillinase synthesis controlled by infectious R factors in Enterobacteriaceae. Nature208:239–241
    [Google Scholar]
  10. DeLisa M. P., Tullman D., Georgiou G.. 2003; Folding quality control in the export of proteins by the bacterial twin-arginine translocation pathway. Proc Natl Acad Sci U S A100:6115–6120
    [Google Scholar]
  11. Dilks K., Rose R. W., Hartmann E., Pohlschroder M.. 2003; Prokaryotic utilization of the twin-arginine translocation pathway: a genomic survey. J Bacteriol185:1478–1483
    [Google Scholar]
  12. Downing K. J., McAdam R. A., Mizrahi V.. 1999; Staphylococcus aureus nuclease is a useful secretion reporter for mycobacteria. Gene239:293–299
    [Google Scholar]
  13. Finlay B. B., Falkow S.. 1997; Common themes in microbial pathogenicity revisited. Microbiol Mol Biol Rev61:136–169
    [Google Scholar]
  14. Flores A. R., Parsons L. M., Pavelka M. S. Jr. 2005; Genetic analysis of the beta-lactamases of Mycobacterium tuberculosis and Mycobacterium smegmatis and susceptibility to beta-lactam antibiotics. Microbiology151:521–532
    [Google Scholar]
  15. Guinn K. M., Hickey M. J., Mathur S. K., Zakel K. L., Grotzke J. E., Lewinsohn D. M., Smith S., Sherman D. R.. 2004; Individual RD1-region genes are required for export of ESAT-6/CFP-10 and for virulence of Mycobacterium tuberculosis . Mol Microbiol51:359–370
    [Google Scholar]
  16. Hewinson R. G., Michell S. L., Russell W. P., McAdam R. A., Jacobs W. J.. 1996; Molecular characterization of MPT83: a seroreactive antigen of Mycobacterium tuberculosis with homology to MPT70. Scand J Immunol43:490–499
    [Google Scholar]
  17. Horwitz M. A., Lee B. W., Dillon B. J., Harth G.. 1995; Protective immunity against tuberculosis induced by vaccination with major extracellular proteins of Mycobacterium tuberculosis . Proc Natl Acad Sci U S A92:1530–1534
    [Google Scholar]
  18. Hsu T., Hingley-Wilson S. M., Chen B., Chen M., Dai A. Z., Morin P. M., Marks C. B., Padiyar J., Goulding C.. other authors 2003; The primary mechanism of attenuation of bacillus Calmette-Guerin is a loss of secreted lytic function required for invasion of lung interstitial tissue. Proc Natl Acad Sci U S A100:12420–12425
    [Google Scholar]
  19. Johansen K. A., Gill R. E., Vasil M. L.. 1996; Biochemical and molecular analysis of phospholipase C and phospholipase D activity in mycobacteria. Infect Immun64:3259–3266
    [Google Scholar]
  20. Juarez M. D., Torres A., Espitia C.. 2001; Characterization of the Mycobacterium tuberculosis region containing the mpt83 and mpt70 genes. FEMS Microbiol Lett203:95–102
    [Google Scholar]
  21. Kurtz S., Braunstein M.. 2005; Protein secretion and export in Mycobacterium tuberculosis . In Mycobacterium Molecular Biology pp71–138 Edited by Parish T. Norwich, UK: Horizon Bioscience;
  22. Lee H. J., Hughes K. T.. 2006; Posttranscriptional control of the Salmonella enterica flagellar hook protein FlgE. J Bacteriol188:3308–3316
    [Google Scholar]
  23. Lim E. M., Rauzier J., Timm J., Torrea G., Murray A., Gicquel B., Portnoi D.. 1995; Identification of Mycobacterium tuberculosis DNA sequences encoding exported proteins by using phoA gene fusions. J Bacteriol177:59–65
    [Google Scholar]
  24. Manca C., Lyashchenko K., Wiker H. G., Usai D., Colangeli R., Gennaro M. L.. 1997; Molecular cloning, purification, and serological characterization of MPT63, a novel antigen secreted by Mycobacterium tuberculosis . Infect Immun65:16–23
    [Google Scholar]
  25. McDonough J. A., Hacker K. E., Flores A. R., Pavelka M. S. Jr, Braunstein M.. 2005; The twin-arginine translocation pathway of Mycobacterium smegmatis is functional and required for the export of mycobacterial beta-lactamases. J Bacteriol187:7667–7679
    [Google Scholar]
  26. Mori H., Ito K.. 2001; The Sec protein-translocation pathway. Trends Microbiol9:494–500
    [Google Scholar]
  27. O'Callaghan C. H., Morris A., Kirby S. M., Shingler A. H.. 1972; Novel method for detection of beta-lactamases by using a chromogenic cephalosporin substrate. Antimicrob Agents Chemother1:283–288
    [Google Scholar]
  28. Owens M. U., Swords W. E., Schmidt M. G., King C. H., Quinn F. D.. 2002; Cloning, expression, and functional characterization of the Mycobacterium tuberculosis secA gene. FEMS Microbiol Lett211:133–141
    [Google Scholar]
  29. Posey J. E., Shinnick T. M., Quinn F. D.. 2006; Characterization of the twin-arginine translocase secretion system of Mycobacterium smegmatis . J Bacteriol188:1332–1340
    [Google Scholar]
  30. Pym A. S., Brodin P., Majlessi L., Brosch R., Demangel C., Williams A., Griffiths K. E., Marchal G., Leclerc C., Cole S. T.. 2003; Recombinant BCG exporting ESAT-6 confers enhanced protection against tuberculosis. Nat Med9:533–539
    [Google Scholar]
  31. Raynaud C., Guilhot C., Rauzier J., Bordat Y., Pelicic V., Manganelli R., Smith I., Gicquel B., Jackson M.. 2002; Phospholipases C are involved in the virulence of Mycobacterium tuberculosis . Mol Microbiol45:203–217
    [Google Scholar]
  32. Russell D. G.. 2007; Who puts the tubercle in tuberculosis?. Nat Rev Microbiol5:39–47
    [Google Scholar]
  33. Safdar A., Armstrong D.. 2003; Antimicrobial activities against 84 Listeria monocytogenes isolates from patients with systemic listeriosis at a comprehensive cancer center (1955–1997. J Clin Microbiol41:483–485
    [Google Scholar]
  34. Said-Salim B., Mostowy S., Kristof A. S., Behr M. A.. 2006; Mutations in Mycobacterium tuberculosis Rv0444c, the gene encoding anti-SigK, explain high level expression of MPB70 and MPB83 in Mycobacterium bovis . Mol Microbiol62:1251–1263
    [Google Scholar]
  35. Saint-Joanis B., Demangel C., Jackson M., Brodin P., Marsollier L., Boshoff H., Cole S. T.. 2006; Inactivation of Rv2525c, a substrate of the twin arginine translocation (Tat) system of Mycobacterium tuberculosis , increases beta-lactam susceptibility and virulence. J Bacteriol188:6669–6679
    [Google Scholar]
  36. Sassetti C. M., Boyd D. H., Rubin E. J.. 2003; Genes required for mycobacterial growth defined by high density mutagenesis. Mol Microbiol48:77–84
    [Google Scholar]
  37. Sauvonnet N., Pugsley A. P.. 1996; Identification of two regions of Klebsiella oxytoca pullulanase that together are capable of promoting beta-lactamase secretion by the general secretory pathway. Mol Microbiol22:1–7
    [Google Scholar]
  38. Schnappinger D., Ehrt S., Voskuil M. I., Liu Y., Mangan J. A., Monahan I. M., Dolganov G., Efron B., Butcher P. D.. other authors 2003; Transcriptional adaptation of Mycobacterium tuberculosis within macrophages: insights into the phagosomal environment. J Exp Med198:693–704
    [Google Scholar]
  39. Stanley N. R., Sargent F., Buchanan G., Shi J., Stewart V., Palmer T., Berks B. C.. 2002; Behaviour of topological marker proteins targeted to the Tat protein transport pathway. Mol Microbiol43:1005–1021
    [Google Scholar]
  40. Stanley S. A., Raghavan S., Hwang W. W., Cox J. S.. 2003; Acute infection and macrophage subversion by Mycobacterium tuberculosis require a specialized secretion system. Proc Natl Acad Sci U S A100:13001–13006
    [Google Scholar]
  41. Stover C. K., de la Cruz V. F., Fuerst T. R., Burlein J. E., Benson L. A., Bennett L. T., Bansal G. P., Young J. F., Lee M. H., Hatfull G. F.. 1991; New use of BCG for recombinant vaccines. Nature351:456–460
    [Google Scholar]
  42. Sutcliffe I. C., Harrington D. J.. 2004; Lipoproteins of Mycobacterium tuberculosis : an abundant and functionally diverse class of cell envelope components. FEMS Microbiol Rev28:645–659
    [Google Scholar]
  43. Tulkens P. M.. 1991; Intracellular distribution and activity of antibiotics. Eur J Clin Microbiol Infect Dis10:100–106
    [Google Scholar]
  44. Tullman-Ercek D., Delisa M. P., Kawarasaki Y., Iranpour P., Ribnicky B., Palmer T., Georgiou G.. 2007; Export pathway selectivity of Escherichia coli twin-arginine translocation signal peptides. J Biol Chem282:8309–8316
    [Google Scholar]
  45. WHO 2007; WHO Information tuberculosis fact sheet World Health Organization;
    [Google Scholar]
  46. Wiker H. G., Wilson M. A., Schoolnik G. K.. 2000; Extracytoplasmic proteins of Mycobacterium tuberculosis – mature secreted proteins often start with aspartic acid and proline. Microbiology146:1525–1533
    [Google Scholar]
  47. Zahrt T. C., Deretic V.. 2002; Reactive nitrogen and oxygen intermediates and bacterial defenses: unusual adaptations in Mycobacterium tuberculosis . Antioxid Redox Signal4:141–159
    [Google Scholar]
  48. Zhang M., Gong J., Lin Y., Barnes P. F.. 1998; Growth of virulent and avirulent Mycobacterium tuberculosis strains in human macrophages. Infect Immun66:794–799
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.2007/008516-0
Loading
/content/journal/micro/10.1099/mic.0.2007/008516-0
Loading

Data & Media loading...

Most cited this month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error