1887

Abstract

Twelve mutants carrying -transposon insertions in motility and chemotaxis genes were isolated on the basis of strong low-temperature induction. Two transposons were located within an 11.2 kb enteric flagellar cluster 2 (Flag-2) of biotype 2, serotype O : 9 strain W22703. The Flag-2 gene cluster is absent from the corresponding genomic location of the sequenced strain biotype 1B, serotype O : 8 strain 8081. Evidence for the functionality of the O : 9 Flag-2 genes, probably located within the plasticity zone of the genome, is provided by swarming assays. PCR analysis of 49 strains revealed the presence of Flag-2 genes in biotypes 2–5, but not in biotypes 1A or 1B. Bioluminescence, measured between 6 and 37 °C, showed that the expression of all genes located in Flag-2 and in the known flagellar cluster, Flag-1, was highest at approximately 20 °C, and that expression of two Flag-2 genes is FlhC-dependent. In a motility assay, a non-motile and a hyper-motile phenotype resulted from knockout mutations of the Flag-1 genes and , respectively. Complemented strains validated these results, confirming the regulatory role of FliT.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.2007/008458-0
2008-01-01
2019-12-13
Loading full text...

Full text loading...

/deliver/fulltext/micro/154/1/196.html?itemId=/content/journal/micro/10.1099/mic.0.2007/008458-0&mimeType=html&fmt=ahah

References

  1. Aldridge, P. & Hughes, K. T. ( 2002; ). Regulation of flagellar assembly. Curr Opin Microbiol 5, 160–165.[CrossRef]
    [Google Scholar]
  2. Auvray, F., Thomas, J., Fraser, G. M. & Hughes, C. ( 2001; ). Flagellin polymerisation control by a cytosolic export chaperone. J Mol Biol 308, 221–229.[CrossRef]
    [Google Scholar]
  3. Bigot, A., Pagniez, H., Botton, E., Frehel, C., Dubail, I., Jacquet, C., Charbit, A. & Raynaud, C. ( 2005; ). Role of FliF and FliI of Listeria monocytogenes in flagellar assembly and pathogenicity. Infect Immun 73, 5530–5539.[CrossRef]
    [Google Scholar]
  4. Bleves, S., Marenne, M. N., Detry, G. & Cornelis, G. R. ( 2002; ). Up-regulation of the Yersinia enterocolitica yop regulon by deletion of the flagellum master operon flhDC. J Bacteriol 184, 3214–3223.[CrossRef]
    [Google Scholar]
  5. Bottone, E. J. ( 1997; ). Yersinia enterocolitica: the charisma continues. Clin Microbiol Rev 10, 257–276.
    [Google Scholar]
  6. Bottone, E. J. ( 1999; ). Yersinia enterocolitica: overview and epidemiologic correlates. Microbes Infect 1, 323–333.[CrossRef]
    [Google Scholar]
  7. Bresolin, G., Neuhaus, K., Scherer, S. & Fuchs, T. M. ( 2006a; ). Transcriptional analysis of long-term adaptation of Yersinia enterocolitica to low-temperature growth. J Bacteriol 188, 2945–2958.[CrossRef]
    [Google Scholar]
  8. Bresolin, G., Morgan, J. A., Ilgen, D., Scherer, S. & Fuchs, T. M. ( 2006b; ). Low temperature-induced insecticidal activity of Yersinia enterocolitica. Mol Microbiol 59, 503–512.[CrossRef]
    [Google Scholar]
  9. Chang, A. C. & Cohen, S. N. ( 1978; ). Construction and characterization of amplifiable multicopy DNA cloning vehicles derived from the P15A cryptic miniplasmid. J Bacteriol 134, 1141–1156.
    [Google Scholar]
  10. Chilcott, G. S. & Hughes, K. T. ( 2000; ). Coupling of flagellar gene expression to flagellar assembly in Salmonella enterica serovar Typhimurium and Escherichia coli. Microbiol Mol Biol Rev 64, 694–708.[CrossRef]
    [Google Scholar]
  11. Cornelis, G. & Colson, C. ( 1975; ). Restriction of DNA in Yersinia enterocolitica detected by recipient ability for a derepressed R factor from Escherichia coli. J Gen Microbiol 87, 285–291.[CrossRef]
    [Google Scholar]
  12. Cowles, K. N. & Goodrich-Blair, H. ( 2005; ). Expression and activity of a Xenorhabdus nematophila haemolysin required for full virulence towards Manduca sexta insects. Cell Microbiol 7, 209–219.
    [Google Scholar]
  13. Fredriksson-Ahomaa, M., Stolle, A. & Korkeala, H. ( 2006; ). Molecular epidemiology of Yersinia enterocolitica infections. FEMS Immunol Med Microbiol 47, 315–329.[CrossRef]
    [Google Scholar]
  14. Frye, J., Karlinsey, J. E., Felise, H. R., Marzolf, B., Dowidar, N., McClelland, M. & Hughes, K. T. ( 2006; ). Identification of new flagellar genes of Salmonella enterica serovar Typhimurium. J Bacteriol 188, 2233–2243.[CrossRef]
    [Google Scholar]
  15. Fukushima, H., Ito, Y., Saito, K., Tsubokura, M. & Otsuki, K. ( 1979; ). Role of the fly in the transport of Yersinia enterocolitica. Appl Environ Microbiol 38, 1009–1010.
    [Google Scholar]
  16. Grunenfelder, B., Gehrig, S. & Jenal, U. ( 2003; ). Role of the cytoplasmic C terminus of the FliF motor protein in flagellar assembly and rotation. J Bacteriol 185, 1624–1633.[CrossRef]
    [Google Scholar]
  17. Horne, S. M. & Pruss, B. M. ( 2006; ). Global gene regulation in Yersinia enterocolitica: effect of FliA on the expression levels of flagellar and plasmid-encoded virulence genes. Arch Microbiol 185, 115–126.[CrossRef]
    [Google Scholar]
  18. Kapatral, V. & Minnich, S. A. ( 1995; ). Co-ordinate, temperature-sensitive regulation of the three Yersinia enterocolitica flagellin genes. Mol Microbiol 17, 49–56.[CrossRef]
    [Google Scholar]
  19. Kapatral, V., Campbell, J. W., Minnich, S. A., Thomson, N. R., Matsumura, P. & Pruss, B. M. ( 2004; ). Gene array analysis of Yersinia enterocolitica FlhD and FlhC: regulation of enzymes affecting synthesis and degradation of carbamoylphosphate. Microbiology 150, 2289–2300.[CrossRef]
    [Google Scholar]
  20. Kutsukake, K., Ikebe, T. & Yamamoto, S. ( 1999; ). Two novel regulatory genes, fliT and fliZ, in the flagellar regulon of Salmonella. Genes Genet Syst 74, 287–292.[CrossRef]
    [Google Scholar]
  21. Ochman, H., Ajioka, J. W., Garza, D. & Hartl, D. L. ( 1990; ). Inverse polymerase chain reaction. Biotechnology (N Y) 8, 759–760.[CrossRef]
    [Google Scholar]
  22. Ozin, A. J., Claret, L., Auvray, F. & Hughes, C. ( 2003; ). The FliS chaperone selectively binds the disordered flagellin C-terminal D0 domain central to polymerisation. FEMS Microbiol Lett 219, 219–224.[CrossRef]
    [Google Scholar]
  23. Parkhill, J., Wren, B. W., Thomson, N. R., Titball, R. W., Holden, M. T., Prentice, M. B., Sebaihia, M., James, K. D., Churcher, C. & other authors ( 2001; ). Genome sequence of Yersinia pestis, the causative agent of plague. Nature 413, 523–527.[CrossRef]
    [Google Scholar]
  24. Rahuma, N., Ghenghesh, K. S., Ben Aissa, R. & Elamaari, A. ( 2005; ). Carriage by the housefly (Musca domestica) of multiple-antibiotic-resistant bacteria that are potentially pathogenic to humans, in hospital and other urban environments in Misurata, Libya. Ann Trop Med Parasitol 99, 795–802.[CrossRef]
    [Google Scholar]
  25. Ren, C. P., Beatson, S. A., Parkhill, J. & Pallen, M. J. ( 2005; ). The Flag-2 locus, an ancestral gene cluster, is potentially associated with a novel flagellar system from Escherichia coli. J Bacteriol 187, 1430–1440.[CrossRef]
    [Google Scholar]
  26. Rohde, J. R., Fox, J. M. & Minnich, S. A. ( 1994; ). Thermoregulation in Yersinia enterocolitica is coincident with changes in DNA supercoiling. Mol Microbiol 12, 187–199.[CrossRef]
    [Google Scholar]
  27. Sambrook, J. & Russell, D. W. ( 2001; ). Molecular Cloning: a Laboratory Manual, 3rd edn. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory.
  28. Simon, R., Priefer, U. & Pühler, A. ( 1983; ). A broad host range mobilization system for in vitro genetic engineering: transposon mutagenesis in Gram-negative bacteria. Bio/technology 1, 784–791.[CrossRef]
    [Google Scholar]
  29. Thomson, N. R., Howard, S., Wren, B. W., Holden, M. T., Crossman, L., Challis, G. L., Churcher, C., Mungall, K., Brooks, K. & other authors ( 2006; ). The complete genome sequence and comparative genome analysis of the high pathogenicity Yersinia enterocolitica strain 8081. PLoS Genet 2, e206 [CrossRef]
    [Google Scholar]
  30. Wang, Q., Frye, J. G., McClelland, M. & Harshey, R. M. ( 2004; ). Gene expression patterns during swarming in Salmonella typhimurium: genes specific to surface growth and putative new motility and pathogenicity genes. Mol Microbiol 52, 169–187.[CrossRef]
    [Google Scholar]
  31. Winson, M. K., Swift, S., Hill, P. J., Sims, C. M., Griesmayr, G., Bycroft, B. W., Williams, P. & Stewart, G. S. ( 1998; ). Engineering the luxCDABE genes from Photorhabdus luminescens to provide a bioluminescent reporter for constitutive and promoter probe plasmids and mini-Tn5 constructs. FEMS Microbiol Lett 163, 193–202.[CrossRef]
    [Google Scholar]
  32. Yokoseki, T., Kutsukake, K., Ohnishi, K. & Iino, T. ( 1995; ). Functional analysis of the flagellar genes in the fliD operon of Salmonella typhimurium. Microbiology 141, 1715–1722.[CrossRef]
    [Google Scholar]
  33. Yokoseki, T., Iino, T. & Kutsukake, K. ( 1996; ). Negative regulation by fliD, fliS, and fliT of the export of the flagellum-specific anti-sigma factor, FlgM, in Salmonella typhimurium. J Bacteriol 178, 899–901.
    [Google Scholar]
  34. Young, G. M., Schmiel, D. H. & Miller, V. L. ( 1999; ). A new pathway for the secretion of virulence factors by bacteria: the flagellar export apparatus functions as a protein-secretion system. Proc Natl Acad Sci U S A 96, 6456–6461.[CrossRef]
    [Google Scholar]
  35. Young, G. M., Badger, J. L. & Miller, V. L. ( 2000; ). Motility is required to initiate host cell invasion by Yersinia enterocolitica. Infect Immun 68, 4323–4326.[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.2007/008458-0
Loading
/content/journal/micro/10.1099/mic.0.2007/008458-0
Loading

Data & Media loading...

Supplements

vol. , part 1, pp. 196 - 206

Primers used for inverse PCR and cloning [ PDF] (91 kb)



PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error