1887

Abstract

Twelve mutants carrying -transposon insertions in motility and chemotaxis genes were isolated on the basis of strong low-temperature induction. Two transposons were located within an 11.2 kb enteric flagellar cluster 2 (Flag-2) of biotype 2, serotype O : 9 strain W22703. The Flag-2 gene cluster is absent from the corresponding genomic location of the sequenced strain biotype 1B, serotype O : 8 strain 8081. Evidence for the functionality of the O : 9 Flag-2 genes, probably located within the plasticity zone of the genome, is provided by swarming assays. PCR analysis of 49 strains revealed the presence of Flag-2 genes in biotypes 2–5, but not in biotypes 1A or 1B. Bioluminescence, measured between 6 and 37 °C, showed that the expression of all genes located in Flag-2 and in the known flagellar cluster, Flag-1, was highest at approximately 20 °C, and that expression of two Flag-2 genes is FlhC-dependent. In a motility assay, a non-motile and a hyper-motile phenotype resulted from knockout mutations of the Flag-1 genes and , respectively. Complemented strains validated these results, confirming the regulatory role of FliT.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.2007/008458-0
2008-01-01
2020-10-01
Loading full text...

Full text loading...

/deliver/fulltext/micro/154/1/196.html?itemId=/content/journal/micro/10.1099/mic.0.2007/008458-0&mimeType=html&fmt=ahah

References

  1. Aldridge P., Hughes K. T.. 2002; Regulation of flagellar assembly. Curr Opin Microbiol5:160–165
    [Google Scholar]
  2. Auvray F., Thomas J., Fraser G. M., Hughes C.. 2001; Flagellin polymerisation control by a cytosolic export chaperone. J Mol Biol308:221–229
    [Google Scholar]
  3. Bigot A., Pagniez H., Botton E., Frehel C., Dubail I., Jacquet C., Charbit A., Raynaud C.. 2005; Role of FliF and FliI of Listeria monocytogenes in flagellar assembly and pathogenicity. Infect Immun73:5530–5539
    [Google Scholar]
  4. Bleves S., Marenne M. N., Detry G., Cornelis G. R.. 2002; Up-regulation of the Yersinia enterocolitica yop regulon by deletion of the flagellum master operon flhDC . J Bacteriol184:3214–3223
    [Google Scholar]
  5. Bottone E. J.. 1997; Yersinia enterocolitica : the charisma continues. Clin Microbiol Rev10:257–276
    [Google Scholar]
  6. Bottone E. J.. 1999; Yersinia enterocolitica : overview and epidemiologic correlates. Microbes Infect1:323–333
    [Google Scholar]
  7. Bresolin G., Neuhaus K., Scherer S., Fuchs T. M.. 2006a; Transcriptional analysis of long-term adaptation of Yersinia enterocolitica to low-temperature growth. J Bacteriol188:2945–2958
    [Google Scholar]
  8. Bresolin G., Morgan J. A., Ilgen D., Scherer S., Fuchs T. M.. 2006b; Low temperature-induced insecticidal activity of Yersinia enterocolitica . Mol Microbiol59:503–512
    [Google Scholar]
  9. Chang A. C., Cohen S. N.. 1978; Construction and characterization of amplifiable multicopy DNA cloning vehicles derived from the P15A cryptic miniplasmid. J Bacteriol134:1141–1156
    [Google Scholar]
  10. Chilcott G. S., Hughes K. T.. 2000; Coupling of flagellar gene expression to flagellar assembly in Salmonella enterica serovar Typhimurium and Escherichia coli . Microbiol Mol Biol Rev64:694–708
    [Google Scholar]
  11. Cornelis G., Colson C.. 1975; Restriction of DNA in Yersinia enterocolitica detected by recipient ability for a derepressed R factor from Escherichia coli . J Gen Microbiol87:285–291
    [Google Scholar]
  12. Cowles K. N., Goodrich-Blair H.. 2005; Expression and activity of a Xenorhabdus nematophila haemolysin required for full virulence towards Manduca sexta insects. Cell Microbiol7:209–219
    [Google Scholar]
  13. Fredriksson-Ahomaa M., Stolle A., Korkeala H.. 2006; Molecular epidemiology of Yersinia enterocolitica infections. FEMS Immunol Med Microbiol47:315–329
    [Google Scholar]
  14. Frye J., Karlinsey J. E., Felise H. R., Marzolf B., Dowidar N., McClelland M., Hughes K. T.. 2006; Identification of new flagellar genes of Salmonella enterica serovar Typhimurium. J Bacteriol188:2233–2243
    [Google Scholar]
  15. Fukushima H., Ito Y., Saito K., Tsubokura M., Otsuki K.. 1979; Role of the fly in the transport of Yersinia enterocolitica . Appl Environ Microbiol38:1009–1010
    [Google Scholar]
  16. Grunenfelder B., Gehrig S., Jenal U.. 2003; Role of the cytoplasmic C terminus of the FliF motor protein in flagellar assembly and rotation. J Bacteriol185:1624–1633
    [Google Scholar]
  17. Horne S. M., Pruss B. M.. 2006; Global gene regulation in Yersinia enterocolitica : effect of FliA on the expression levels of flagellar and plasmid-encoded virulence genes. Arch Microbiol185:115–126
    [Google Scholar]
  18. Kapatral V., Minnich S. A.. 1995; Co-ordinate, temperature-sensitive regulation of the three Yersinia enterocolitica flagellin genes. Mol Microbiol17:49–56
    [Google Scholar]
  19. Kapatral V., Campbell J. W., Minnich S. A., Thomson N. R., Matsumura P., Pruss B. M.. 2004; Gene array analysis of Yersinia enterocolitica FlhD and FlhC: regulation of enzymes affecting synthesis and degradation of carbamoylphosphate. Microbiology150:2289–2300
    [Google Scholar]
  20. Kutsukake K., Ikebe T., Yamamoto S.. 1999; Two novel regulatory genes, fliT and fliZ , in the flagellar regulon of Salmonella . Genes Genet Syst74:287–292
    [Google Scholar]
  21. Ochman H., Ajioka J. W., Garza D., Hartl D. L.. 1990; Inverse polymerase chain reaction. Biotechnology ( N Y ) 8:759–760
    [Google Scholar]
  22. Ozin A. J., Claret L., Auvray F., Hughes C.. 2003; The FliS chaperone selectively binds the disordered flagellin C-terminal D0 domain central to polymerisation. FEMS Microbiol Lett219:219–224
    [Google Scholar]
  23. Parkhill J., Wren B. W., Thomson N. R., Titball R. W., Holden M. T., Prentice M. B., Sebaihia M., James K. D., Churcher C.. other authors 2001; Genome sequence of Yersinia pestis , the causative agent of plague. Nature413:523–527
    [Google Scholar]
  24. Rahuma N., Ghenghesh K. S., Ben Aissa R., Elamaari A.. 2005; Carriage by the housefly ( Musca domestica ) of multiple-antibiotic-resistant bacteria that are potentially pathogenic to humans, in hospital and other urban environments in Misurata, Libya. Ann Trop Med Parasitol99:795–802
    [Google Scholar]
  25. Ren C. P., Beatson S. A., Parkhill J., Pallen M. J.. 2005; The Flag-2 locus, an ancestral gene cluster, is potentially associated with a novel flagellar system from Escherichia coli . J Bacteriol187:1430–1440
    [Google Scholar]
  26. Rohde J. R., Fox J. M., Minnich S. A.. 1994; Thermoregulation in Yersinia enterocolitica is coincident with changes in DNA supercoiling. Mol Microbiol12:187–199
    [Google Scholar]
  27. Sambrook J., Russell D. W.. 2001; Molecular Cloning: a Laboratory Manual , 3rd edn. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
  28. Simon R., Priefer U., Pühler A.. 1983; A broad host range mobilization system for in vitro genetic engineering: transposon mutagenesis in Gram-negative bacteria. Bio/technology1:784–791
    [Google Scholar]
  29. Thomson N. R., Howard S., Wren B. W., Holden M. T., Crossman L., Challis G. L., Churcher C., Mungall K., Brooks K.. other authors 2006; The complete genome sequence and comparative genome analysis of the high pathogenicity Yersinia enterocolitica strain 8081. PLoS Genet2:e206
    [Google Scholar]
  30. Wang Q., Frye J. G., McClelland M., Harshey R. M.. 2004; Gene expression patterns during swarming in Salmonella typhimurium : genes specific to surface growth and putative new motility and pathogenicity genes. Mol Microbiol52:169–187
    [Google Scholar]
  31. Winson M. K., Swift S., Hill P. J., Sims C. M., Griesmayr G., Bycroft B. W., Williams P., Stewart G. S.. 1998; Engineering the luxCDABE genes from Photorhabdus luminescens to provide a bioluminescent reporter for constitutive and promoter probe plasmids and mini-Tn 5 constructs. FEMS Microbiol Lett163:193–202
    [Google Scholar]
  32. Yokoseki T., Kutsukake K., Ohnishi K., Iino T.. 1995; Functional analysis of the flagellar genes in the fliD operon of Salmonella typhimurium . Microbiology141:1715–1722
    [Google Scholar]
  33. Yokoseki T., Iino T., Kutsukake K.. 1996; Negative regulation by fliD, fliS , and fliT of the export of the flagellum-specific anti-sigma factor, FlgM, in Salmonella typhimurium . J Bacteriol178:899–901
    [Google Scholar]
  34. Young G. M., Schmiel D. H., Miller V. L.. 1999; A new pathway for the secretion of virulence factors by bacteria: the flagellar export apparatus functions as a protein-secretion system. Proc Natl Acad Sci U S A96:6456–6461
    [Google Scholar]
  35. Young G. M., Badger J. L., Miller V. L.. 2000; Motility is required to initiate host cell invasion by Yersinia enterocolitica . Infect Immun68:4323–4326
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.2007/008458-0
Loading
/content/journal/micro/10.1099/mic.0.2007/008458-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error