1887

Abstract

The group B streptococcus (GBS) is an opportunistic bacterial pathogen with the ability to cause invasive disease. While the ability of GBS to invade a number of host-cell types has been clearly demonstrated, the invasion process is not well understood at the molecular level. What has been well established is that modulation of host-cell actin microfilaments is essential for GBS invasion to occur. Phosphoinositide-3 kinase (PI3K) is a key regulator of the cytoskeleton in eukaryotic cells. Our goal in this investigation was to explore the role of the PI3K/Akt signalling pathway in epithelial cell invasion by GBS. The epithelial cell invasion process was mimicked using the HeLa 229 cell-culture model. Treating HeLa cells with chemical inhibitors of PI3K, Akt or Ras prior to bacterial infection inhibited GBS invasion but not attachment; treatment with 30 μM LY294002 (PI3K inhibitor) reduced GBS invasion by 75 %, 20 μM -6-hydroxymethyl--inositol 2-(R)-2--methyl-3--octadecylcarbonate (ICIO) (Akt inhibitor) reduced GBS invasion by 50 %, and 10 μM manumycin A (Ras inhibitor) inhibited GBS invasion by 90 %. Genetic inactivation of the p85 or p110 PI3K subunits in HeLa cells also reduced GBS invasion by 55 and 30 %, respectively. Western blot analysis revealed that phosphorylation of host-cell Akt and glycogen synthase kinase-3 (GSK-3) occurs in response to GBS infection, and that this is mediated upstream by PI3K. Infection of HeLa cells with GBS triggers pro-survival signalling and protects the HeLa cells from camptothecin-induced caspase-3 cleavage. The results from this investigation show that GBS both requires and activates the PI3K/Akt host-cell signalling pathway during invasion of epithelial cells.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.2007/008417-0
2007-12-01
2020-04-08
Loading full text...

Full text loading...

/deliver/fulltext/micro/153/12/4240.html?itemId=/content/journal/micro/10.1099/mic.0.2007/008417-0&mimeType=html&fmt=ahah

References

  1. Bollag D. M., Edelstein S. J.. 1991; Protein Methods New York: Wiley-Liss;
  2. Bradford M. M.. 1976; A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein–dye binding. Anal Biochem72:248–254
    [Google Scholar]
  3. Burnham C. A., Shokoples S. E., Tyrrell G. J.. 2007; Rac1, RhoA, and Cdc42 participate in HeLa cell invasion by group B streptococcus. FEMS Microbiol Lett272:8–14
    [Google Scholar]
  4. Chan T. O., Rittenhouse S. E., Tsichlis P. N.. 1999; AKT/PKB and other D3 phosphoinositide-regulated kinases: kinase activation by phosphoinositide-dependent phosphorylation. Annu Rev Biochem68:965–1014
    [Google Scholar]
  5. Chan T. O., Rodeck U., Chan A. M., Kimmelman A. C., Rittenhouse S. E., Panayotou G., Tsichlis P. N.. 2002; Small GTPases and tyrosine kinases coregulate a molecular switch in the phosphoinositide 3-kinase regulatory subunit. Cancer Cell1:181–191
    [Google Scholar]
  6. Chou M. M., Hou W., Johnson J., Graham L. K., Lee M. H., Chen C. S., Newton A. C., Schaffhausen B. S., Toker A.. 1998; Regulation of protein kinase C ζ by PI 3-kinase and PDK-1. Curr Biol8:1069–1077
    [Google Scholar]
  7. Coombes B. K., Mahony J. B.. 2002; Identification of MEK- and phosphoinositide 3-kinase-dependent signalling as essential events during Chlamydia pneumoniae invasion of HEp2 cells. Cell Microbiol4:447–460
    [Google Scholar]
  8. Cox D., Tseng C. C., Bjekic G., Greenberg S.. 1999; A requirement for phosphatidylinositol 3-kinase in pseudopod extension. J Biol Chem274:1240–1247
    [Google Scholar]
  9. Cross D. A., Alessi D. R., Cohen P., Andjelkovich M., Hemmings B. A.. 1995; Inhibition of glycogen synthase kinase-3 by insulin mediated by protein kinase B. Nature378:785–789
    [Google Scholar]
  10. Datta S. R., Brunet A., Greenberg M. E.. 1999; Cellular survival: a play in three Akts. Genes Dev13:2905–2927
    [Google Scholar]
  11. Davies S. P., Reddy H., Caivano M., Cohen P.. 2000; Specificity and mechanism of action of some commonly used protein kinase inhibitors. Biochem J351:95–105
    [Google Scholar]
  12. Embi N., Rylatt D. B., Cohen P.. 1980; Glycogen synthase kinase-3 from rabbit skeletal muscle. Separation from cyclic-AMP-dependent protein kinase and phosphorylase kinase. Eur J Biochem107:519–527
    [Google Scholar]
  13. Farley M. M., Harvey R. C., Stull T., Smith J. D., Schuchat A., Wenger J. D., Stephens D. S.. 1993; A population-based assessment of invasive disease due to group B streptococcus in nonpregnant adults. N Engl J Med328:1807–1811
    [Google Scholar]
  14. Finlay B. B., Cossart P.. 1997; Exploitation of mammalian host cell functions by bacterial pathogens. Science276:718–725
    [Google Scholar]
  15. Gibson R. L., Lee M. K., Soderland C., Chi E. Y., Rubens C. E.. 1993; Group B streptococci invade endothelial cells: type III capsular polysaccharide attenuates invasion. Infect Immun61:478–485
    [Google Scholar]
  16. Greco R., De M. L., Donnarumma G., Conte M. P., Seganti L., Valenti P.. 1995; Invasion of cultured human cells by Streptococcus pyogenes . Res Microbiol146:551–560
    [Google Scholar]
  17. Hall A.. 1998; Rho GTPases and the actin cytoskeleton. Science279:509–514
    [Google Scholar]
  18. Hiromura M., Okada F., Obata T., Auguin D., Shibata T., Roumestand C., Noguchi M.. 2004; Inhibition of Akt kinase activity by a peptide spanning the β A strand of the proto-oncogene TCL1. J Biol Chem279:53407–53418
    [Google Scholar]
  19. Hu Y., Qiao L., Wang S., Rong S. B., Meuillet E. J., Berggren M., Gallegos A., Powis G., Kozikowski A. P.. 2000; 3-(Hydroxymethyl)-bearing phosphatidylinositol ether lipid analogues and carbonate surrogates block PI3-K, Akt, and cancer cell growth. J Med Chem43:3045–3051
    [Google Scholar]
  20. Ireton K., Payrastre B., Cossart P.. 1999; The Listeria monocytogenes protein InlB is an agonist of mammalian phosphoinositide 3-kinase. J Biol Chem274:17025–17032
    [Google Scholar]
  21. Knodler L. A., Finlay B. B., Steele-Mortimer O.. 2005; The Salmonella effector protein SopB protects epithelial cells from apoptosis by sustained activation of Akt. J Biol Chem280:9058–9064
    [Google Scholar]
  22. Kwok T., Backert S., Schwarz H., Berger J., Meyer T. F.. 2002; Specific entry of Helicobacter pylori into cultured gastric epithelial cells via a zipper-like mechanism. Infect Immun70:2108–2120
    [Google Scholar]
  23. Lalonde M., Segura M., Lacouture S., Gottschalk M.. 2000; Interactions between Streptococcus suis serotype 2 and different epithelial cell lines. Microbiology146:1913–1921
    [Google Scholar]
  24. Nizet V., Kim K. S., Stins M., Jonas M., Chi E. Y., Nguyen D., Rubens C. E.. 1997; Invasion of brain microvascular endothelial cells by group B streptococci. Infect Immun65:5074–5081
    [Google Scholar]
  25. Pap M., Cooper G. M.. 1998; Role of glycogen synthase kinase-3 in the phosphatidylinositol 3-kinase/Akt cell survival pathway. J Biol Chem273:19929–19932
    [Google Scholar]
  26. Pizarro-Cerda J., Cossart P.. 2004; Subversion of phosphoinositide metabolism by intracellular bacterial pathogens. Nat Cell Biol6:1026–1033
    [Google Scholar]
  27. Purushothaman S. S., Wang B., Cleary P. P.. 2003; M1 protein triggers a phosphoinositide cascade for group A Streptococcus invasion of epithelial cells. Infect Immun71:5823–5830
    [Google Scholar]
  28. Reuther G. W., Der C. J.. 2000; The Ras branch of small GTPases: Ras family members don't fall far from the tree. Curr Opin Cell Biol12:157–165
    [Google Scholar]
  29. Rubens C. E., Smith S., Hulse M., Chi E. Y., van Belle G.. 1992; Respiratory epithelial cell invasion by group B streptococci. Infect Immun60:5157–5163
    [Google Scholar]
  30. Sattler I., Thiericke R., Zeeck A.. 1998; The Manumycin-group metabolites. Nat Prod Rep15:221–240
    [Google Scholar]
  31. Schuchat A.. 1998; Epidemiology of group B streptococcal disease in the United States: shifting paradigms. Clin Microbiol Rev11:497–513
    [Google Scholar]
  32. Schuchat A., Oxtoby M., Cochi S., Sikes R. K., Hightower A., Plikaytis B., Broome C. V.. 1990; Population-based risk factors for neonatal group B streptococcal disease: results of a cohort study in metropolitan Atlanta. J Infect Dis162:672–677
    [Google Scholar]
  33. Schuchat A., Robinson K., Wenger J. D., Harrison L. H., Farley M., Reingold A. L., Lefkowitz L., Perkins B. A.. 1997; Bacterial meningitis in the United States in 1995. . N Engl J Med337:970–976
    [Google Scholar]
  34. Segura M., Gottschalk M., Olivier M.. 2004; Encapsulated Streptococcus suis inhibits activation of signaling pathways involved in phagocytosis. Infect Immun72:5322–5330
    [Google Scholar]
  35. Shin S., Kim K. S.. 2006; RhoA and Rac1 contribute to type III group B streptococcal invasion of human brain microvascular endothelial cells. Biochem Biophys Res Commun345:538–542
    [Google Scholar]
  36. Shin S., Maneesh P. S., Lee J. S., Romer L. H., Kim K. S.. 2006; Focal adhesion kinase is involved in type III group B streptococcal invasion of human brain microvascular endothelial cells. Microb Pathog41:168–173
    [Google Scholar]
  37. Stokoe D.. 2005; The phosphoinositide 3-kinase pathway and cancer. Expert Rev Mol Med7:1–22
    [Google Scholar]
  38. Tafazoli F., Magnusson K. E., Zheng L.. 2003; Disruption of epithelial barrier integrity by Salmonella enterica serovar Typhimurium requires geranylgeranylated proteins. Infect Immun71:872–881
    [Google Scholar]
  39. Takenawa T., Itoh T.. 2001; Phosphoinositides, key molecules for regulation of actin cytoskeletal organization and membrane traffic from the plasma membrane. Biochim Biophys Acta 1533;190–206
    [Google Scholar]
  40. Tamura G. S., Kuypers J. M., Smith S., Raff H., Rubens C. E.. 1994; Adherence of group B streptococci to cultured epithelial cells: roles of environmental factors and bacterial surface components. Infect Immun62:2450–2458
    [Google Scholar]
  41. Tapon N., Hall A.. 1997; Rho, Rac and Cdc42 GTPases regulate the organization of the actin cytoskeleton. Curr Opin Cell Biol9:86–92
    [Google Scholar]
  42. Taylor S. J., Shalloway D.. 1996; Cell cycle-dependent activation of Ras. Curr Biol6:1621–1627
    [Google Scholar]
  43. Tyrrell G. J., Senzilet L. D., Spika J. S., Kertesz D. A., Alagaratnam M., Lovgren M., Talbot J. A.. 2000; Invasive disease due to group B streptococcal infection in adults: results from a Canadian, population-based, active laboratory surveillance study – 1996. J Infect Dis182:168–173
    [Google Scholar]
  44. Tyrrell G. J., Kennedy A., Shokoples S. E., Sherburne R. K.. 2002; Binding and invasion of HeLa and MRC-5 cells by Streptococcus agalactiae . Microbiology148:3921–3931
    [Google Scholar]
  45. Ulett G. C., Maclean K. H., Nekkalapu S., Cleveland J. L., Adderson E. E.. 2005; Mechanisms of group B streptococcal-induced apoptosis of murine macrophages. J Immunol175:2555–2562
    [Google Scholar]
  46. Valentin-Weigand P., Benkel P., Rohde M., Chhatwal G. S.. 1996; Entry and intracellular survival of group B streptococci in J774 macrophages. Infect Immun64:2467–2473
    [Google Scholar]
  47. Valentin-Weigand P., Jungnitz H., Zock A., Rohde M., Chhatwal G. S.. 1997; Characterization of group B streptococcal invasion in HEp-2 epithelial cells. FEMS Microbiol Lett147:69–74
    [Google Scholar]
  48. Vanhaesebroeck B., Alessi D. R.. 2000; The PI3K–PDK1 connection: more than just a road to PKB. Biochem J346:561–576
    [Google Scholar]
  49. Vlahos C. J., Matter W. F., Hui K. Y., Brown R. F.. 1994; A specific inhibitor of phosphatidylinositol 3-kinase, 2-(4-morpholinyl)-8-phenyl-4H–1-benzopyran-4-one (LY294002. J Biol Chem269:5241–5248
    [Google Scholar]
  50. Wang B., Lim D. J., Han J., Kim Y. S., Basbaum C. B., Li J. D.. 2002; Novel cytoplasmic proteins of nontypeable Haemophilus influenzae up-regulate human MUC5AC mucin transcription via a positive p38 mitogen-activated protein kinase pathway and a negative phosphoinositide 3-kinase-Akt pathway. J Biol Chem277:949–957
    [Google Scholar]
  51. Yang L., Dan H. C., Sun M., Liu Q., Sun X. M., Feldman R. I., Hamilton A. D., Polokoff M., Nicosia S. V.. other authors 2004; Akt/protein kinase B signaling inhibitor-2, a selective small molecule inhibitor of Akt signaling with antitumor activity in cancer cells overexpressing Akt. Cancer Res64:4394–4399
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.2007/008417-0
Loading
/content/journal/micro/10.1099/mic.0.2007/008417-0
Loading

Data & Media loading...

Most cited this month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error