1887

Abstract

The group B streptococcus (GBS) is an opportunistic bacterial pathogen with the ability to cause invasive disease. While the ability of GBS to invade a number of host-cell types has been clearly demonstrated, the invasion process is not well understood at the molecular level. What has been well established is that modulation of host-cell actin microfilaments is essential for GBS invasion to occur. Phosphoinositide-3 kinase (PI3K) is a key regulator of the cytoskeleton in eukaryotic cells. Our goal in this investigation was to explore the role of the PI3K/Akt signalling pathway in epithelial cell invasion by GBS. The epithelial cell invasion process was mimicked using the HeLa 229 cell-culture model. Treating HeLa cells with chemical inhibitors of PI3K, Akt or Ras prior to bacterial infection inhibited GBS invasion but not attachment; treatment with 30 μM LY294002 (PI3K inhibitor) reduced GBS invasion by 75 %, 20 μM -6-hydroxymethyl--inositol 2-(R)-2--methyl-3--octadecylcarbonate (ICIO) (Akt inhibitor) reduced GBS invasion by 50 %, and 10 μM manumycin A (Ras inhibitor) inhibited GBS invasion by 90 %. Genetic inactivation of the p85 or p110 PI3K subunits in HeLa cells also reduced GBS invasion by 55 and 30 %, respectively. Western blot analysis revealed that phosphorylation of host-cell Akt and glycogen synthase kinase-3 (GSK-3) occurs in response to GBS infection, and that this is mediated upstream by PI3K. Infection of HeLa cells with GBS triggers pro-survival signalling and protects the HeLa cells from camptothecin-induced caspase-3 cleavage. The results from this investigation show that GBS both requires and activates the PI3K/Akt host-cell signalling pathway during invasion of epithelial cells.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.2007/008417-0
2007-12-01
2019-10-19
Loading full text...

Full text loading...

/deliver/fulltext/micro/153/12/4240.html?itemId=/content/journal/micro/10.1099/mic.0.2007/008417-0&mimeType=html&fmt=ahah

References

  1. Bollag, D. M. & Edelstein, S. J. ( 1991; ). Protein Methods. New York: Wiley-Liss.
  2. Bradford, M. M. ( 1976; ). A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein–dye binding. Anal Biochem 72, 248–254.[CrossRef]
    [Google Scholar]
  3. Burnham, C. A., Shokoples, S. E. & Tyrrell, G. J. ( 2007; ). Rac1, RhoA, and Cdc42 participate in HeLa cell invasion by group B streptococcus. FEMS Microbiol Lett 272, 8–14.[CrossRef]
    [Google Scholar]
  4. Chan, T. O., Rittenhouse, S. E. & Tsichlis, P. N. ( 1999; ). AKT/PKB and other D3 phosphoinositide-regulated kinases: kinase activation by phosphoinositide-dependent phosphorylation. Annu Rev Biochem 68, 965–1014.[CrossRef]
    [Google Scholar]
  5. Chan, T. O., Rodeck, U., Chan, A. M., Kimmelman, A. C., Rittenhouse, S. E., Panayotou, G. & Tsichlis, P. N. ( 2002; ). Small GTPases and tyrosine kinases coregulate a molecular switch in the phosphoinositide 3-kinase regulatory subunit. Cancer Cell 1, 181–191.[CrossRef]
    [Google Scholar]
  6. Chou, M. M., Hou, W., Johnson, J., Graham, L. K., Lee, M. H., Chen, C. S., Newton, A. C., Schaffhausen, B. S. & Toker, A. ( 1998; ). Regulation of protein kinase C ζ by PI 3-kinase and PDK-1. Curr Biol 8, 1069–1077.[CrossRef]
    [Google Scholar]
  7. Coombes, B. K. & Mahony, J. B. ( 2002; ). Identification of MEK- and phosphoinositide 3-kinase-dependent signalling as essential events during Chlamydia pneumoniae invasion of HEp2 cells. Cell Microbiol 4, 447–460.[CrossRef]
    [Google Scholar]
  8. Cox, D., Tseng, C. C., Bjekic, G. & Greenberg, S. ( 1999; ). A requirement for phosphatidylinositol 3-kinase in pseudopod extension. J Biol Chem 274, 1240–1247.[CrossRef]
    [Google Scholar]
  9. Cross, D. A., Alessi, D. R., Cohen, P., Andjelkovich, M. & Hemmings, B. A. ( 1995; ). Inhibition of glycogen synthase kinase-3 by insulin mediated by protein kinase B. Nature 378, 785–789.[CrossRef]
    [Google Scholar]
  10. Datta, S. R., Brunet, A. & Greenberg, M. E. ( 1999; ). Cellular survival: a play in three Akts. Genes Dev 13, 2905–2927.[CrossRef]
    [Google Scholar]
  11. Davies, S. P., Reddy, H., Caivano, M. & Cohen, P. ( 2000; ). Specificity and mechanism of action of some commonly used protein kinase inhibitors. Biochem J 351, 95–105.[CrossRef]
    [Google Scholar]
  12. Embi, N., Rylatt, D. B. & Cohen, P. ( 1980; ). Glycogen synthase kinase-3 from rabbit skeletal muscle. Separation from cyclic-AMP-dependent protein kinase and phosphorylase kinase. Eur J Biochem 107, 519–527.
    [Google Scholar]
  13. Farley, M. M., Harvey, R. C., Stull, T., Smith, J. D., Schuchat, A., Wenger, J. D. & Stephens, D. S. ( 1993; ). A population-based assessment of invasive disease due to group B streptococcus in nonpregnant adults. N Engl J Med 328, 1807–1811.[CrossRef]
    [Google Scholar]
  14. Finlay, B. B. & Cossart, P. ( 1997; ). Exploitation of mammalian host cell functions by bacterial pathogens. Science 276, 718–725.[CrossRef]
    [Google Scholar]
  15. Gibson, R. L., Lee, M. K., Soderland, C., Chi, E. Y. & Rubens, C. E. ( 1993; ). Group B streptococci invade endothelial cells: type III capsular polysaccharide attenuates invasion. Infect Immun 61, 478–485.
    [Google Scholar]
  16. Greco, R., De, M. L., Donnarumma, G., Conte, M. P., Seganti, L. & Valenti, P. ( 1995; ). Invasion of cultured human cells by Streptococcus pyogenes. Res Microbiol 146, 551–560.[CrossRef]
    [Google Scholar]
  17. Hall, A. ( 1998; ). Rho GTPases and the actin cytoskeleton. Science 279, 509–514.[CrossRef]
    [Google Scholar]
  18. Hiromura, M., Okada, F., Obata, T., Auguin, D., Shibata, T., Roumestand, C. & Noguchi, M. ( 2004; ). Inhibition of Akt kinase activity by a peptide spanning the βA strand of the proto-oncogene TCL1. J Biol Chem 279, 53407–53418.[CrossRef]
    [Google Scholar]
  19. Hu, Y., Qiao, L., Wang, S., Rong, S. B., Meuillet, E. J., Berggren, M., Gallegos, A., Powis, G. & Kozikowski, A. P. ( 2000; ). 3-(Hydroxymethyl)-bearing phosphatidylinositol ether lipid analogues and carbonate surrogates block PI3-K, Akt, and cancer cell growth. J Med Chem 43, 3045–3051.[CrossRef]
    [Google Scholar]
  20. Ireton, K., Payrastre, B. & Cossart, P. ( 1999; ). The Listeria monocytogenes protein InlB is an agonist of mammalian phosphoinositide 3-kinase. J Biol Chem 274, 17025–17032.[CrossRef]
    [Google Scholar]
  21. Knodler, L. A., Finlay, B. B. & Steele-Mortimer, O. ( 2005; ). The Salmonella effector protein SopB protects epithelial cells from apoptosis by sustained activation of Akt. J Biol Chem 280, 9058–9064.[CrossRef]
    [Google Scholar]
  22. Kwok, T., Backert, S., Schwarz, H., Berger, J. & Meyer, T. F. ( 2002; ). Specific entry of Helicobacter pylori into cultured gastric epithelial cells via a zipper-like mechanism. Infect Immun 70, 2108–2120.[CrossRef]
    [Google Scholar]
  23. Lalonde, M., Segura, M., Lacouture, S. & Gottschalk, M. ( 2000; ). Interactions between Streptococcus suis serotype 2 and different epithelial cell lines. Microbiology 146, 1913–1921.
    [Google Scholar]
  24. Nizet, V., Kim, K. S., Stins, M., Jonas, M., Chi, E. Y., Nguyen, D. & Rubens, C. E. ( 1997; ). Invasion of brain microvascular endothelial cells by group B streptococci. Infect Immun 65, 5074–5081.
    [Google Scholar]
  25. Pap, M. & Cooper, G. M. ( 1998; ). Role of glycogen synthase kinase-3 in the phosphatidylinositol 3-kinase/Akt cell survival pathway. J Biol Chem 273, 19929–19932.[CrossRef]
    [Google Scholar]
  26. Pizarro-Cerda, J. & Cossart, P. ( 2004; ). Subversion of phosphoinositide metabolism by intracellular bacterial pathogens. Nat Cell Biol 6, 1026–1033.[CrossRef]
    [Google Scholar]
  27. Purushothaman, S. S., Wang, B. & Cleary, P. P. ( 2003; ). M1 protein triggers a phosphoinositide cascade for group A Streptococcus invasion of epithelial cells. Infect Immun 71, 5823–5830.[CrossRef]
    [Google Scholar]
  28. Reuther, G. W. & Der, C. J. ( 2000; ). The Ras branch of small GTPases: Ras family members don't fall far from the tree. Curr Opin Cell Biol 12, 157–165.[CrossRef]
    [Google Scholar]
  29. Rubens, C. E., Smith, S., Hulse, M., Chi, E. Y. & van Belle, G. ( 1992; ). Respiratory epithelial cell invasion by group B streptococci. Infect Immun 60, 5157–5163.
    [Google Scholar]
  30. Sattler, I., Thiericke, R. & Zeeck, A. ( 1998; ). The Manumycin-group metabolites. Nat Prod Rep 15, 221–240.[CrossRef]
    [Google Scholar]
  31. Schuchat, A. ( 1998; ). Epidemiology of group B streptococcal disease in the United States: shifting paradigms. Clin Microbiol Rev 11, 497–513.
    [Google Scholar]
  32. Schuchat, A., Oxtoby, M., Cochi, S., Sikes, R. K., Hightower, A., Plikaytis, B. & Broome, C. V. ( 1990; ). Population-based risk factors for neonatal group B streptococcal disease: results of a cohort study in metropolitan Atlanta. J Infect Dis 162, 672–677.[CrossRef]
    [Google Scholar]
  33. Schuchat, A., Robinson, K., Wenger, J. D., Harrison, L. H., Farley, M., Reingold, A. L., Lefkowitz, L. & Perkins, B. A. ( 1997; ). Bacterial meningitis in the United States in 1995. . N Engl J Med 337, 970–976.[CrossRef]
    [Google Scholar]
  34. Segura, M., Gottschalk, M. & Olivier, M. ( 2004; ). Encapsulated Streptococcus suis inhibits activation of signaling pathways involved in phagocytosis. Infect Immun 72, 5322–5330.[CrossRef]
    [Google Scholar]
  35. Shin, S. & Kim, K. S. ( 2006; ). RhoA and Rac1 contribute to type III group B streptococcal invasion of human brain microvascular endothelial cells. Biochem Biophys Res Commun 345, 538–542.[CrossRef]
    [Google Scholar]
  36. Shin, S., Maneesh, P. S., Lee, J. S., Romer, L. H. & Kim, K. S. ( 2006; ). Focal adhesion kinase is involved in type III group B streptococcal invasion of human brain microvascular endothelial cells. Microb Pathog 41, 168–173.[CrossRef]
    [Google Scholar]
  37. Stokoe, D. ( 2005; ). The phosphoinositide 3-kinase pathway and cancer. Expert Rev Mol Med 7, 1–22.
    [Google Scholar]
  38. Tafazoli, F., Magnusson, K. E. & Zheng, L. ( 2003; ). Disruption of epithelial barrier integrity by Salmonella enterica serovar Typhimurium requires geranylgeranylated proteins. Infect Immun 71, 872–881.[CrossRef]
    [Google Scholar]
  39. Takenawa, T. & Itoh, T. ( 2001; ). Phosphoinositides, key molecules for regulation of actin cytoskeletal organization and membrane traffic from the plasma membrane. Biochim Biophys Acta 1533, 190–206.[CrossRef]
    [Google Scholar]
  40. Tamura, G. S., Kuypers, J. M., Smith, S., Raff, H. & Rubens, C. E. ( 1994; ). Adherence of group B streptococci to cultured epithelial cells: roles of environmental factors and bacterial surface components. Infect Immun 62, 2450–2458.
    [Google Scholar]
  41. Tapon, N. & Hall, A. ( 1997; ). Rho, Rac and Cdc42 GTPases regulate the organization of the actin cytoskeleton. Curr Opin Cell Biol 9, 86–92.[CrossRef]
    [Google Scholar]
  42. Taylor, S. J. & Shalloway, D. ( 1996; ). Cell cycle-dependent activation of Ras. Curr Biol 6, 1621–1627.[CrossRef]
    [Google Scholar]
  43. Tyrrell, G. J., Senzilet, L. D., Spika, J. S., Kertesz, D. A., Alagaratnam, M., Lovgren, M. & Talbot, J. A. ( 2000; ). Invasive disease due to group B streptococcal infection in adults: results from a Canadian, population-based, active laboratory surveillance study – 1996. J Infect Dis 182, 168–173.[CrossRef]
    [Google Scholar]
  44. Tyrrell, G. J., Kennedy, A., Shokoples, S. E. & Sherburne, R. K. ( 2002; ). Binding and invasion of HeLa and MRC-5 cells by Streptococcus agalactiae. Microbiology 148, 3921–3931.
    [Google Scholar]
  45. Ulett, G. C., Maclean, K. H., Nekkalapu, S., Cleveland, J. L. & Adderson, E. E. ( 2005; ). Mechanisms of group B streptococcal-induced apoptosis of murine macrophages. J Immunol 175, 2555–2562.[CrossRef]
    [Google Scholar]
  46. Valentin-Weigand, P., Benkel, P., Rohde, M. & Chhatwal, G. S. ( 1996; ). Entry and intracellular survival of group B streptococci in J774 macrophages. Infect Immun 64, 2467–2473.
    [Google Scholar]
  47. Valentin-Weigand, P., Jungnitz, H., Zock, A., Rohde, M. & Chhatwal, G. S. ( 1997; ). Characterization of group B streptococcal invasion in HEp-2 epithelial cells. FEMS Microbiol Lett 147, 69–74.[CrossRef]
    [Google Scholar]
  48. Vanhaesebroeck, B. & Alessi, D. R. ( 2000; ). The PI3K–PDK1 connection: more than just a road to PKB. Biochem J 346, 561–576.[CrossRef]
    [Google Scholar]
  49. Vlahos, C. J., Matter, W. F., Hui, K. Y. & Brown, R. F. ( 1994; ). A specific inhibitor of phosphatidylinositol 3-kinase, 2-(4-morpholinyl)-8-phenyl-4H–1-benzopyran-4-one (LY294002). J Biol Chem 269, 5241–5248.
    [Google Scholar]
  50. Wang, B., Lim, D. J., Han, J., Kim, Y. S., Basbaum, C. B. & Li, J. D. ( 2002; ). Novel cytoplasmic proteins of nontypeable Haemophilus influenzae up-regulate human MUC5AC mucin transcription via a positive p38 mitogen-activated protein kinase pathway and a negative phosphoinositide 3-kinase-Akt pathway. J Biol Chem 277, 949–957.[CrossRef]
    [Google Scholar]
  51. Yang, L., Dan, H. C., Sun, M., Liu, Q., Sun, X. M., Feldman, R. I., Hamilton, A. D., Polokoff, M., Nicosia, S. V. & other authors ( 2004; ). Akt/protein kinase B signaling inhibitor-2, a selective small molecule inhibitor of Akt signaling with antitumor activity in cancer cells overexpressing Akt. Cancer Res 64, 4394–4399.[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.2007/008417-0
Loading
/content/journal/micro/10.1099/mic.0.2007/008417-0
Loading

Data & Media loading...

Supplements

Supplementary Fig. S1 legend [PDF file](9 KB)

PDF

Supplementary Fig. S1. Invasion assays [PDF file](55 KB)

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error