Analysis of a novel spore antigen in that contributes to spore opsonization Free

Abstract

The significance of as an agent of bioterrorism has been well established. An understanding of both the pathogenesis and the host response is required to elucidate approaches to more rapidly detect and effectively prevent or treat anthrax. Current vaccine strategies are focused primarily on production of antibodies against the protective antigen components of the anthrax toxins, which are secreted by the bacilli. A better understanding of the dynamic morphology of the dormant and germinating spore and its interaction with the host immune system could be important in developing an optimally efficacious anthrax vaccine. A spore-associated protein was identified that was specific to the group of bacteria and referred to as spore opsonization-associated antigen A (SoaA). Immuno-electron microscopy localized this protein to the area of the cortex beneath the coat of the dormant spore. Although our data suggested that SoaA was found below the coat layers of the ungerminated spore, SoaA was involved in the interaction of spores with macrophages shortly after infection. To investigate further the specific properties of the SoaA protein, the gene was inactivated in the Ames strain. The SoaA protein in the Ames strain of increased the phagocytic uptake of the spores in the presence of anti-spore antibodies. Unlike the wild-type strain, the mutant  : : Kan strain was not readily opsonized by anti-spore antibodies. While the mutant spores retained characteristic resistance properties and virulence , the  : : Kan mutant strain was significantly less suited for survival when competed against the wild-type Ames strain.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.2007/008292-0
2008-02-01
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/micro/154/2/619.html?itemId=/content/journal/micro/10.1099/mic.0.2007/008292-0&mimeType=html&fmt=ahah

References

  1. Amaya E., Khvorova A., Piggot P. J. 2001; Analysis of promoter recognition directed by σ F of Bacillus subtilis by using random-sequence oligonucleotides. J Bacteriol 183:3623–3630
    [Google Scholar]
  2. Banks D. J., Barnajian M., Maldonado-Arocho F. J., Sanchez A. M., Bradley K. A. 2005; Anthrax toxin receptor 2 mediates Bacillus anthracis killing of macrophages following spore challenge. Cell Microbiol 7:1173–1185
    [Google Scholar]
  3. Bhatnagar R., Batra S. 2001; Anthrax toxin. Crit Rev Microbiol 27:167–200
    [Google Scholar]
  4. Bozue J. A., Parthasarathy N., Phillips L. R., Cote C. K., Fellows P. F., Mendelson I., Shafferman A., Friedlander A. M. 2005; Construction of a rhamnose mutation in Bacillus anthracis affects adherence to macrophages but not virulence in guinea pigs. Microb Pathog 38:1–12
    [Google Scholar]
  5. Bozue J., Cote C. K., Moody K. L., Welkos S. L. 2007; Fully virulent Bacillus anthracis does not require the immunodominant protein, BclA, for pathogenesis. Infect Immun 75:508–511
    [Google Scholar]
  6. Brachman P. S., Gold H., Plotkin S. A., Fekety F. R., Werrin M., Ingraham N. R. 1962; Field evaluation of a human anthrax vaccine. Am J Public Health 52:632–645
    [Google Scholar]
  7. Brossier F., Mock M. 2001; Toxins of Bacillus anthracis . Toxicon 39:1747–1755
    [Google Scholar]
  8. Brossier F., Levy M., Mock M. 2002; Anthrax spores make an essential contribution to vaccine efficacy. Infect Immun 70:661–664
    [Google Scholar]
  9. Challacombe J. F., Altherr M. R., Xie G., Bhotika S. S., Brown N., Bruce D., Campbell C. S., Campbell M. L., Chen J. other authors 2007; The complete genome sequence of Bacillus thuringiensis Al Hakam. J Bacteriol 189:3680–3681
    [Google Scholar]
  10. Clements M. O., Moir A. 1998; Role of the gerI operon of Bacillus cereus 569 in the response of spores to germinants. J Bacteriol 180:6729–6735
    [Google Scholar]
  11. Coburn P. S., Hancock L. E., Booth M. C., Gilmore M. S. 1999; A novel means of self-protection, unrelated to toxin activation, confers immunity to the bactericidal effects of the Enterococcus faecalis cytolysin. Infect Immun 67:3339–3347
    [Google Scholar]
  12. Cohen S., Mendelson I., Altboum Z., Kobiler D., Elhanany E., Bino T., Leitner M., Inbar I., Rosenberg H. other authors 2000; Attenuated nontoxinogenic and nonencapsulated recombinant Bacillus anthracis spore vaccines protect against anthrax. Infect Immun 68:4549–4558
    [Google Scholar]
  13. Cote C. K., Rea K. M., Norris S. L., van Rooijen N., Welkos S. L. 2004; The use of a model of in vivo macrophage depletion to study the role of macrophages during infection with Bacillus anthracis spores. Microb Pathog 37:169–175
    [Google Scholar]
  14. Cote C. K., Rossi C. A., Kang A. S., Morrow P. R., Lee J. S., Welkos S. L. 2005; The detection of protective antigen (PA) associated with spores of Bacillus anthracis and the effects of anti-PA antibodies on spore germination and macrophage interactions. Microb Pathog 38:209–225
    [Google Scholar]
  15. Cowan A. E., Olivastro E. M., Koppel D. E., Loshon C. A., Setlow B., Setlow P. 2004; Lipids in the inner membrane of dormant Bacillus species are largely immobile. Proc Natl Acad Sci U S A 101:7733–7738
    [Google Scholar]
  16. Day W. A. Jr, Rasmussen S. L., Carpenter B. M., Peterson S. N., Friedlander A. M. 2007; Microarray analysis of transposon insertion mutations in Bacillus anthracis : global identification of genes required for sporulation and germination. J Bacteriol 189:3296–3301
    [Google Scholar]
  17. Enkhtuya J., Kawamoto K., Kobayashi Y., Uchida I., Rana N., Makino S. 2006; Significant passive protective effect against anthrax by antibody to Bacillus anthracis inactivated spores that lack two virulence plasmids. Microbiology 152:3103–3110
    [Google Scholar]
  18. Enkhtuya J., Makino S., Uchida I., Kawamoto K. 2007; In reply – Microbiology Comment. Microbiology 153:302–304
    [Google Scholar]
  19. Farchaus J. W., Ribot W. J., Jendrek S., Little S. F. 1998; Fermentation, purification, and characterization of protective antigen from a recombinant, avirulent strain of Bacillus anthracis . Appl Environ Microbiol 64:982–991
    [Google Scholar]
  20. Fellows P. F., Linscott M. K., Ivins B. E., Pitt M. L., Rossi C. A., Gibbs P. H., Friedlander A. M. 2001; Efficacy of a human anthrax vaccine in guinea pigs, rabbits, and rhesus macaques against challenge by Bacillus anthracis isolates of diverse geographical origin. Vaccine 19:3241–3247
    [Google Scholar]
  21. Friedlander A. M. 2000; Anthrax: clinical features, pathogenesis, and potential biological warfare threat. Curr Clin Top Infect Dis 20:335–349
    [Google Scholar]
  22. Friedlander A. M., Pittman P. R., Parker G. W. 1999; Anthrax vaccine: evidence for safety and efficacy against inhalational anthrax. JAMA 282:2104–2106
    [Google Scholar]
  23. Friedlander A. M., Welkos S. L., Ivins B. E. 2002; Anthrax vaccines. Curr Top Microbiol Immunol 271:33–60
    [Google Scholar]
  24. Gardy J. L., Spencer C., Wang K., Ester M., Tusnády G. E., Simon I., Hua S., deFays K., Lambert C. other authors 2003; PSORT-B: improving protein subcellular localization prediction for Gram-negative bacteria. Nucleic Acids Res 31:3613–3617
    [Google Scholar]
  25. Glomski I. J., Corre J. P., Mock M., Goossens P. L. 2007; Cutting edge: IFN- γ -producing CD4 T lymphocytes mediate spore-induced immunity to capsulated Bacillus anthracis . J Immunol 178:2646–2650
    [Google Scholar]
  26. Gominet M., Slamti L., Gilois N., Rose M., Lereclus D. 2001; Oligopeptide permease is required for expression of the Bacillus thuringiensis plcR regulon and for virulence. Mol Microbiol 40:963–975
    [Google Scholar]
  27. Goodin J. L., Raab R. W., McKown R. L., Coffman G. L., Powell B. S., Enama J. T., Ligon J. A., Andrews G. P. 2005; Yersinia pestis outer membrane type III secretion protein YscC: expression, purification, characterization, and induction of specific antiserum. Protein Expr Purif 40:152–163
    [Google Scholar]
  28. Goossens P. L., Sylvestre P., Mock M. 2007; Of spore opsonization and passive protection against anthrax – Microbiology Comment. Microbiology 153:301–302
    [Google Scholar]
  29. Hahn U. K., Boehm R., Beyer W. 2005; DNA vaccination against anthrax in mice – combination of anti-spore and anti-toxin components. Vaccine 24:4569–4571
    [Google Scholar]
  30. Helmann J. D., Moran C. P. Jr 2002; RNA polymerase and sigma factors. In Bacillus subtilis and its Closest Relatives. From Genes to Cells pp 289–312 Edited by Sonenshein A. L., Hoch J. A., Losick R. Washington, DC: American Society for Microbiology;
    [Google Scholar]
  31. Jackson P. J., Walthers E. A., Kalif A. S., Richmond K. L., Adair D. M., Hill K. K., Kuske C. R., Andersen G. L., Wilson K. H. other authors 1997; Characterization of the variable-number tandem repeats in vrrA from different Bacillus anthracis isolates. Appl Environ Microbiol 63:1400–1405
    [Google Scholar]
  32. Jedrzejas M. J. 2002; The structure and function of novel proteins of Bacillus anthracis and other spore-forming bacteria: development of novel prophylactic and therapeutic agents. Crit Rev Biochem Mol Biol 37:339–373
    [Google Scholar]
  33. Joellenbeck L. M., Hernandez L. M. 2002; The Institute of Medicine's independent scientific assessment of Gulf War health issues. Mil Med 167:186–190
    [Google Scholar]
  34. Johnson Z. I., Chisholm S. W. 2004; Properties of overlapping genes are conserved across microbial genomes. Genome Res 14:2268–2272
    [Google Scholar]
  35. Keim P., Kalif A., Schupp J., Hill K., Travis S. E., Richmond K., Adair D. M., Hugh-Jones M., Kuske C. R., Jackson P. 1997; Molecular evolution and diversity in Bacillus anthracis as detected by amplified fragment length polymorphism markers. J Bacteriol 179:818–824
    [Google Scholar]
  36. Kim H., Hahn M., Grabowski P., McPherson D. C., Otte M. M., Wang R., Ferguson C. C., Eichenberger P., Driks A. 2006; The Bacillus subtilis spore coat protein interaction network. Mol Microbiol 59:487–502
    [Google Scholar]
  37. Krogh A., Larsson B., von Heijne G., Sonnhammer E. L. 2001; Predicting transmembrane protein topology with a hidden Markov model: application to complete genomes. J Mol Biol 305:567–580
    [Google Scholar]
  38. Kudva I. T., Griffin R. W., Garren J. M., Calderwood S. B., John M. 2005; Identification of a protein subset of the anthrax spore immunome in humans immunized with the anthrax vaccine adsorbed preparation. Infect Immun 73:5685–5696
    [Google Scholar]
  39. Laflamme C., Lavigne S., Ho J., Duchaine C. 2004; Assessment of bacterial endospore viability with fluorescent dyes. J Appl Microbiol 96:684–692
    [Google Scholar]
  40. Lemon K. P., Grossman A. D. 1998; Localization of bacterial DNA polymerase: evidence for a factory model of replication. Science 282:1516–1519
    [Google Scholar]
  41. Leppla S. H., Robbins J. B., Schneerson R., Shiloach J. 2002; Development of an improved vaccine for anthrax. J Clin Invest 110:141–144
    [Google Scholar]
  42. Little S., Driks A. 2001; Functional analysis of the Bacillus subtilis morphogenetic spore coat protein CotE. Mol Microbiol 42:1107–1120
    [Google Scholar]
  43. Little S. F., Knudson G. B. 1986; Comparative efficacy of Bacillus anthracis live spore vaccine and protective antigen vaccine against anthrax in the guinea pig. Infect Immun 52:509–512
    [Google Scholar]
  44. Little S. F., Webster W. M., Ivins B. E., Fellows P. F., Norris S. L., Andrews G. P. 2004; Development of an in vitro-based potency assay for anthrax vaccine. Vaccine 22:2843–2852
    [Google Scholar]
  45. Mendelson I., Tobery S., Scorpio A., Bozue J., Shafferman A., Friedlander A. M. 2004; The NheA component of the non-hemolytic enterotoxin of Bacillus cereus is produced by Bacillus anthracis but is not required for virulence. Microb Pathog 37:149–154
    [Google Scholar]
  46. Moir A., Corfe B. M., Behravan J. 2002; Spore germination. Cell Mol Life Sci 59:403–409
    [Google Scholar]
  47. Nicholson W. L., Setlow P. 1990; Sporulation, germination, and outgrowth. In Molecular Biological Methods for Bacillus pp 391–450 Edited by Harwood C. R., Cutting S. M. New York: Wiley;
    [Google Scholar]
  48. Pagni M., Ioannidis V., Cerutti L., Zahn-Zabal M., Jongeneel C. V., Falquet L. 2004; MyHits: a new interactive resource for protein annotation and domain identification. Nucleic Acids Res 32:W332–W335
    [Google Scholar]
  49. Paidhungat M., Setlow P. 1999; Isolation and characterization of mutations in Bacillus subtilis that allow spore germination in the novel germinant d-alanine. J Bacteriol 181:3341–3350
    [Google Scholar]
  50. Pandey N. K., Aronson A. I. 1979; Properties of the Bacillus subtilis spore coat. J Bacteriol 137:1208–1218
    [Google Scholar]
  51. Perez-Casal J., Caparon M. G., Scott J. R. 1991; Mry, a trans -acting positive regulator of the M protein gene of Streptococcus pyogenes with similarity to the receptor proteins of two-component regulatory systems. J Bacteriol 173:2617–2624
    [Google Scholar]
  52. Phillips A. P., Ezzell J. W. 1989; Identification of Bacillus anthracis by polyclonal antibodies against extracted vegetative cell antigens. J Appl Bacteriol 66:419–432
    [Google Scholar]
  53. Pittman P. R., Kim-Ahn G., Pifat D. Y., Coonan K., Gibbs P., Little S., Pace-Templeton J. G., Myers R., Parker G. W., Friedlander A. M. 2002; Anthrax vaccine: immunogenicity and safety of a dose-reduction, route-change comparison study in humans. Vaccine 20:1412–1420
    [Google Scholar]
  54. Popov S. G., Popova T. G., Grene E., Klotz F., Cardwell J., Bradburne C., Jama Y., Maland M., Wells J. other authors 2004; Systemic cytokine response in murine anthrax. Cell Microbiol 6:225–233
    [Google Scholar]
  55. Rasko D. A., Ravel J., Okstad O. A., Helgason E., Cer R. Z., Jiang L., Shores K. A., Fouts D. A., Tourasse N. J. other authors 2004; The genome of Bacillus cereus ATCC 10987 reveals metabolic adaptations and a large plasmid related to Bacillus anthracis pXO1. Nucleic Acids Res 32:977–988
    [Google Scholar]
  56. Read T. D., Peterson S. N., Tourasse N., Baillie L. W., Paulsen I. T., Nelson K. E., Tettelin H., Fouts D. E., Eisen J. A. other authors 2003; The genome sequence of Bacillus anthracis Ames and comparison to closely related bacteria. Nature 423:81–86
    [Google Scholar]
  57. Redmond C., Baillie L. W. J., Hibbs S., Moir A. J. G., Moir A. 2004; Identification of proteins in the exosporium of Bacillus anthracis . Microbiology 150:355–363
    [Google Scholar]
  58. Steichen C., Chen P., Kearney J. F., Turnbough C. L. Jr 2003; Identification of the immunodominant protein and other proteins of the Bacillus anthracis exosporium. J Bacteriol 185:1903–1910
    [Google Scholar]
  59. Steichen C. T., Kearney J. F., Turnbough C. L. Jr 2005; Characterization of the exosporium basal layer protein BxpB of Bacillus anthracis . J Bacteriol 187:5868–5876
    [Google Scholar]
  60. Steinmetz M., Richter R. 1994; Easy cloning of mini- Tn 10 insertions form the Bacillus subtilis chromosome. J Bacteriol 176:1761–1763
    [Google Scholar]
  61. Sylvestre P., Couture-Tosi E., Mock M. 2002; A collagen-like surface glycoprotein is a structural component of the Bacillus anthracis exosporium. Mol Microbiol 45:169–178
    [Google Scholar]
  62. Sylvestre P., Couture-Tosi E., Mock M. 2005; Contribution of ExsFA and ExsFB proteins to the localization of BclA on the spore surface and to the stability of the Bacillus anthracis exosporium. J Bacteriol 187:5122–5128
    [Google Scholar]
  63. Vepachedu V. R., Setlow P. 2005; Localization of SpoVAD to the inner membrane of spores of Bacillus subtilis . J Bacteriol 187:5677–5682
    [Google Scholar]
  64. Welkos S. L., Trotter R. W., Becker D. M., Nelson G. O. 1989; Resistance to the Sterne strain of B. anthracis : phagocytic cell responses of resistant and susceptible mice. Microb Pathog 7:15–35
    [Google Scholar]
  65. Welkos S., Little S., Friedlander A., Fritz D., Fellows P. 2001; The role of antibodies to Bacillus anthracis and anthrax toxin components in inhibiting the early stages of infection by anthrax spores. Microbiology 147:1677–1685
    [Google Scholar]
  66. Welkos S., Friedlander A., Weeks S., Little S., Mendelson I. 2002; In-vitro characterisation of the phagocytosis and fate of anthrax spores in macrophages and the effects of anti-PA antibody. J Med Microbiol 51:821–831
    [Google Scholar]
  67. Welkos S. L., Cote C. K., Rea K. M., Gibbs P. H. 2004; A microtiter fluorometric assay to detect the germination of Bacillus anthracis spores and the germination inhibitory effects of antibodies. J Microbiol Methods 56:253–265
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.2007/008292-0
Loading
/content/journal/micro/10.1099/mic.0.2007/008292-0
Loading

Data & Media loading...

Most cited Most Cited RSS feed