1887

Abstract

In some biogenesis of -type cytochromes depends on the products of the () genes, which encode inner-membrane proteins. Inactivation of some genes, in particular , has an impact on other processes as well, including siderophore production and utilization. Non-polar insertions were generated in the , , , and genes, and their impacts on different phenotypes were compared. Only in the case of the mutant was cytochrome production totally abrogated. The mutant, and to a lesser extent the mutant, showed a range of other phenotypic changes. The production of the siderophore pyoverdine was very low and growth under the condition of iron limitation was severely restricted, but production of the second siderophore, pyochelin, was increased. Interestingly, other traits were also strongly affected by the mutation, including the production of pyocyanin, swarming and twitching motility, and rhamnolipid production. The production of -acyl homoserine lactones or the quinolone signal (PQS) was, however, not affected in the and mutants. The mutant was also found to accumulate porphyrins, and catalase production was undetectable, consistent with the increased sensitivity to hydrogen peroxide. Finally, reduction in the content of [Fe–S] clusters was evidenced in both and mutants. Wild-type phenotypes were restored by complementation with a gene from ATCC 17400. In conclusion, we have demonstrated that CcmC is a key determinant for cytochrome biogenesis, pyoverdine maturation, and expression of some quorum sensing-regulated traits.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.2007/008268-0
2008-01-01
2019-10-24
Loading full text...

Full text loading...

/deliver/fulltext/micro/154/1/127.html?itemId=/content/journal/micro/10.1099/mic.0.2007/008268-0&mimeType=html&fmt=ahah

References

  1. Ahuja, U. & Thöny-Meyer, L. ( 2003; ). Dynamic features of a heme delivery system for cytochrome c maturation. J Biol Chem 278, 52061–52070.[CrossRef]
    [Google Scholar]
  2. Ahuja, U. & Thöny-Meyer, L. ( 2005; ). CcmD is involved in complex formation between CcmC and the heme chaperone CcmE during cytochrome c maturation. J Biol Chem 280, 236–243.[CrossRef]
    [Google Scholar]
  3. Banin, E., Vasil, M. L. & Greenberg, E. P. ( 2005; ). Iron and Pseudomonas aeruginosa biofilm formation. Proc Natl Acad Sci U S A 102, 11076–11081.[CrossRef]
    [Google Scholar]
  4. Bassler, B. L. ( 2002; ). Small talk. Cell-to-cell communication in bacteria. Cell 109, 421–424.[CrossRef]
    [Google Scholar]
  5. Baysse, C., Matthijs, S., Pattery, T. & Cornelis, P. ( 2001; ). Impact of mutations in hemA and hemH genes on pyoverdine production by Pseudomonas fluorescens ATCC17400. FEMS Microbiol Lett 205, 57–63.[CrossRef]
    [Google Scholar]
  6. Baysse, C., Budzikiewicz, H., Uria-Fernandez, D. & Cornelis, P. ( 2002; ). Impaired maturation of the siderophore pyoverdine chromophore in Pseudomonas fluorescens ATCC 17400 deficient for the cytochrome c biogenesis protein CcmC. FEBS Lett 523, 23–28.[CrossRef]
    [Google Scholar]
  7. Baysse, C., Matthijs, S., Schobert, M., Layer, G., Jahn, D. & Cornelis, P. ( 2003; ). Co-ordination of iron acquisition, iron porphyrin chelation and iron-protoporphyrin export via the cytochrome c biogenesis protein CcmC in Pseudomonas fluorescens. Microbiology 149, 3543–3552.[CrossRef]
    [Google Scholar]
  8. Baysse, C., Cullinane, M., Dénervaud, V., Burrowes, E., Dow, J. M., Morrissey, J. P., Tam, L., Trevors, J. T. & O'Gara, F. ( 2005; ). Modulation of quorum sensing in Pseudomonas aeruginosa through alteration of membrane properties. Microbiology 151, 2529–2542.[CrossRef]
    [Google Scholar]
  9. Bolivar, F. ( 1978; ). Construction and characterization of new cloning vehicles. III. Derivatives of plasmid pBR322 carrying unique EcoRI-generated recombinant DNA molecules. Gene 4, 121–136.[CrossRef]
    [Google Scholar]
  10. Bredenbruch, F., Geffers, R., Nimtz, M., Buer, J. & Haussler, S. ( 2006; ). The Pseudomonas aeruginosa quinolone signal molecule has an iron-chelating activity. Environ Microbiol 8, 1318–1329.[CrossRef]
    [Google Scholar]
  11. Caiazza, N. C., Shanks, R. M. Q. & O'Toole, G. A. ( 2005; ). Rhamnolipids modulate swarming motility patterns of Pseudomonas aeruginosa. J Bacteriol 187, 7351–7361.[CrossRef]
    [Google Scholar]
  12. Cámara, M., Williams, P. & Hardman, A. ( 2002; ). Controlling infection by tuning in and turning down the volume of bacterial small-talk. Lancet Infect Dis 2, 667–676.[CrossRef]
    [Google Scholar]
  13. Cha, C., Gao, P., Chen, Y. C., Shaw, P. D. & Farrand, S. K. ( 1998; ). Production of acyl-homoserine lactone quorum-sensing signals by Gram-negative plant-associated bacteria. Mol Plant Microbe Interact 11, 1119–1129.[CrossRef]
    [Google Scholar]
  14. Cianciotto, N. P., Cornelis, P. & Baysse, C. ( 2005; ). Impact of the bacterial type I cytochrome c maturation system on different biological processes. Mol Microbiol 56, 1408–1415.[CrossRef]
    [Google Scholar]
  15. Cornelis, P., Anjaiah, V., Koedam, N., Delfosse, P., Jacques, P., Thonart, P. & Neirinckx, L. ( 1992; ). Stability, frequency and multiplicity of transposon insertions in the pyoverdine region in the chromosomes of different fluorescent pseudomonads. J Gen Microbiol 138, 1337–1343.[CrossRef]
    [Google Scholar]
  16. De Chial, M., Ghysels, B., Beatson, S. A., Geoffroy, V., Meyer, J. M., Pattery, T., Baysse, C., Chablain, P., Parsons, Y. N. & other authors ( 2003; ). Identification of type II and type III pyoverdine receptors from Pseudomonas aeruginosa. Microbiology 149, 821–831.[CrossRef]
    [Google Scholar]
  17. de Vrind, J. P. M., Brouwers, G. J., Corstjens, P. L. A. M., den Dulk, J. & de Vrind-de Jong, E. W. ( 1998; ). The cytochrome c maturation operon is involved in manganese oxidation in Pseudomonas putida GB-1. Appl Environ Microbiol 64, 3556–3562.
    [Google Scholar]
  18. Déziel, E., Lépine, F., Milot, S. & Villemur, R. ( 2003; ). rhlA is required for the production of a novel biosurfactant promoting swarming motility in Pseudomonas aeruginosa: 3-(3-hydroxyalkanoyloxy) alkanoic acids (HAAs), the precursors of rhamnolipids. Microbiology 149, 2005–2013.[CrossRef]
    [Google Scholar]
  19. Déziel, E., Lépine, F., Milot, S., He, J., Mindrinos, M. N., Tompkins, R. G. & Rahme, L. G. ( 2004; ). Analysis of Pseudomonas aeruginosa 4-hydroxy-2-alkylquinolines (HAQs) reveals a role for 4-hydroxy-2-heptylquinoline in cell-to-cell communication. Proc Natl Acad Sci U S A 101, 1339–1344.[CrossRef]
    [Google Scholar]
  20. Dietrich, L. E., Price-Whelan, A., Petersen, A., Whiteley, M. & Newman, D. K. ( 2006; ). The phenazine pyocyanin is a terminal signalling factor in the quorum sensing network of Pseudomonas aeruginosa. Mol Microbiol 61, 1308–1321.[CrossRef]
    [Google Scholar]
  21. Diggle, S. P., Winzer, K., Lazdunski, A., Williams, P. & Cámara, M. ( 2002; ). Advancing the quorum in Pseudomonas aeruginosa: MvaT and the regulation of N-acylhomoserine lactone production and virulence gene expression. J Bacteriol 184, 2576–2586.[CrossRef]
    [Google Scholar]
  22. Diggle, S. P., Winzer, K., Chhabra, S. R., Worrall, K. E., Cámara, M. & Williams, P. ( 2003; ). The Pseudomonas aeruginosa quinolone signal molecule moderates the production of rhl-dependent quorum sensing phenotypes and promotes biofilm development. Mol Microbiol 50, 29–43.[CrossRef]
    [Google Scholar]
  23. Diggle, S. P., Lumjiaktase, P., Dipilato, F., Winzer, K., Kunakorn, M., Barrett, D. A., Chhabra, S. R., Cámara, M. & Williams, P. ( 2006a; ). Functional genetic analysis reveals a 2-alkyl-4-quinolone signaling system in the human pathogen Burkholderia pseudomallei and related bacteria. Chem Biol 13, 701–710.[CrossRef]
    [Google Scholar]
  24. Diggle, S. P., Cornelis, P., Williams, P. & Cámara, M. ( 2006b; ). 4-Quinolone signalling in Pseudomonas aeruginosa: old molecules, new perspectives. Int J Med Microbiol 296, 83–91.[CrossRef]
    [Google Scholar]
  25. Edeling, M. A., Ahuja, U., Heras, B., Thöny-Meyer, L. & Martin, J. L. ( 2004; ). The acidic nature of the CcmG redox-active center is important for cytochrome c maturation in Escherichia coli. J Bacteriol 186, 4030–4033.[CrossRef]
    [Google Scholar]
  26. Farmer, K. L. & Thomas, M. S. ( 2004; ). Isolation and characterization of Burkholderia cenocepacia mutants deficient in pyochelin production: pyochelin biosynthesis is sensitive to sulfur availability. J Bacteriol 186, 270–277.[CrossRef]
    [Google Scholar]
  27. Feissner, R., Xyang, Y. & Kranz, R. G. ( 2003; ). Chemiluminescent-based methods to detect subpicomole levels of c-type cytochromes. Anal Biochem 315, 90–94.[CrossRef]
    [Google Scholar]
  28. Gaballa, A., Koedam, N. & Cornelis, P. ( 1996; ). A cytochrome c biogenesis gene involved in pyoverdine production in Pseudomonas fluorescens ATCC 17400. Mol Microbiol 21, 777–785.[CrossRef]
    [Google Scholar]
  29. Gaballa, A., Baysse, C., Koedam, N., Muyldermans, S. & Cornelis, P. ( 1998; ). Different residues in periplasmic domains of the CcmC inner membrane protein of Pseudomonas fluorescens ATCC 17400 are critical for cytochrome c biogenesis and pyoverdine-mediated iron uptake. Mol Microbiol 30, 547–555.[CrossRef]
    [Google Scholar]
  30. Gallagher, L. A., McKnight, S. L., Kuznetsova, M. S., Pesci, E. C. & Manoil, C. ( 2002; ). Functions required for extracellular quinolone signaling by Pseudomonas aeruginosa. J Bacteriol 184, 6472–6480.[CrossRef]
    [Google Scholar]
  31. Ghysels, B., Dieu, B. T. M., Beatson, S. A., Pirnay, J. P., Ochsner, U. A., Vasil, M. L. & Cornelis, P. ( 2004; ). FpvB, an alternative type I ferripyoverdine receptor of Pseudomonas aeruginosa. Microbiology 150, 1671–1680.[CrossRef]
    [Google Scholar]
  32. Goodhew, C. F., Wilson, I. B., Hunter, D. J. & Pettigrew, G. W. ( 1990; ). The cellular location and specificity of bacterial cytochrome c peroxidases. Biochem J 271, 707–712.
    [Google Scholar]
  33. Hanahan, D. ( 1983; ). Studies on transformation of Escherichia coli with plasmids. J Mol Biol 166, 557–580.[CrossRef]
    [Google Scholar]
  34. Hentzer, M., Wu, H., Andersen, J. B., Riedel, K., Rasmussen, T. B., Bagge, N., Kumar, N., Schembri, M. A., Song, Z. & other authors ( 2003; ). Attenuation of Pseudomonas aeruginosa virulence by quorum sensing inhibitors. EMBO J 22, 3803–3815.[CrossRef]
    [Google Scholar]
  35. Höfte, M., Buysens, S., Koedam, N. & Cornelis, P. ( 1993; ). Zinc affects siderophore-mediated high affinity iron uptake systems in the rhizosphere Pseudomonas aeruginosa 7NSK2. Biometals 6, 85–91.
    [Google Scholar]
  36. Imlay, J. A. ( 2006; ). Iron-sulphur clusters and the problem with oxygen. Mol Microbiol 59, 1073–1082.[CrossRef]
    [Google Scholar]
  37. Koedam, N., Wittouck, E., Gaballa, A., Gillis, A., Höfte, M. & Cornelis, P. ( 1994; ). Detection and differentiation of microbial siderophores by isoelectric focusing and chrome azurol S overlay. Biometals 7, 287–291.
    [Google Scholar]
  38. Kovach, M. E., Phillips, R. W., Elzer, P. H., Roop, M. R., II & Peterson, K. M. ( 1994; ). pBBR1MCS: a broad-host-range cloning vector. Biotechniques 16, 800–802.
    [Google Scholar]
  39. Lamont, I. L., Beare, P. A., Ochsner, U., Vasil, A. I. & Vasil, M. L. ( 2002; ). Siderophore mediated signaling regulates virulence factor production in Pseudomonas aeruginosa. Proc Natl Acad Sci U S A 99, 7072–7077.[CrossRef]
    [Google Scholar]
  40. Lazdunski, A. M., Ventre, I. & Sturgis, J. N. ( 2004; ). Regulatory circuits and communication in Gram-negative bacteria. Nat Rev Microbiol 2, 581–592.[CrossRef]
    [Google Scholar]
  41. Matilla, M. A., Ramos, J. L., Duque, E., de Dios Alché, J., Espinoza-Urgel, M. & Ramos-Gonzáles, M. I. ( 2007; ). Temperature and pyoverdine-mediated iron acquisition control surface motility of Pseudomonas putida. Environ Microbiol 9, 1842–1850.[CrossRef]
    [Google Scholar]
  42. Matthijs, S., Baysse, C., Koedam, N., Abbaspour-Tehrani, K., Verheyden, L., Budzikiewicz, H., Schäfer, M., Hoorelbeke, B., Meyer, J. M. & other authors ( 2004; ). The Pseudomonas siderophore quinolobactin is synthezised from xanthurenic acid, an intermediate from the kynurenine pathway. Mol Microbiol 52, 371–384.[CrossRef]
    [Google Scholar]
  43. Matthijs, S., Abbaspour Tehrani, K., Laus, G., Jackson, R., Cooper, R. M. & Cornelis, P. ( 2007; ). Thioquinolobactin, a Pseudomonas siderophore with antifungal and anti-Pythium activity. Environ Microbiol 9, 425–434.[CrossRef]
    [Google Scholar]
  44. Matzanke, B. F., Anemüller, S., Schunemann, V., Trautwein, A. X. & Hantke, K. ( 2004; ). FhuF, part of a siderophore-reductase system. Biochemistry 43, 1386–1392.[CrossRef]
    [Google Scholar]
  45. Mavrodi, D. V., Bonsall, R. F., Delaney, S. M., Soule, M. J., Phillips, G. & Thomashow, L. S. ( 2001; ). Functional analysis of genes for biosynthesis of pyocyanin and phenazine-1-carboxamide from Pseudomonas aeruginosa PAO1. J Bacteriol 183, 6454–6465.[CrossRef]
    [Google Scholar]
  46. McClean, K. H., Winson, M. K., Fish, L., Taylor, A., Chhabra, S. R., Cámara, M., Daykin, M., Lamb, J. H., Swift, S. & other authors ( 1997; ). Quorum sensing and Chromobacterium violaceum: exploitation of violacein production and inhibition for the detection of N-acylhomoserine lactones. Microbiology 143, 3703–3711.[CrossRef]
    [Google Scholar]
  47. McGrath, S., Wade, D. S. & Pesci, E. C. ( 2004; ). Dueling quorum sensing systems in Pseudomonas aeruginosa control the production of the Pseudomonas quinolone signal (PQS). FEMS Microbiol Lett 230, 27–34.[CrossRef]
    [Google Scholar]
  48. McMichael, J. C. ( 1992; ). Bacterial differentiation within Moraxella bovis colonies growing at the interface of the agar medium with the Petri dish. J Gen Microbiol 138, 2687–2695.[CrossRef]
    [Google Scholar]
  49. Middaugh, J., Hamel, R., Jean-Baptiste, G., Beriault, R., Chenier, D. & Appanna, V. D. ( 2005; ). Aluminium triggers decreased aconitase activity via Fe-S cluster disruption and the overexpression of isocitrate dehydrogenase and isocitrate lyase. J Biol Chem 280, 3159–3165.[CrossRef]
    [Google Scholar]
  50. Mossialos, D., Ochsner, U., Baysse, C., Chablain, P., Pirnay, J. P., Koedam, N., Budzikiewicz, H., Uria-Fernandez, D., Schäfer, M. & other authors ( 2002; ). Identification of new, conserved, non-ribosomal peptide synthetases from fluorescent Pseudomonads involved in the biosynthesis of the siderophore pyoverdine. Mol Microbiol 45, 1673–1687.[CrossRef]
    [Google Scholar]
  51. Pettigrew, G. W. & Brown, K. R. ( 1988; ). Free and membrane-bound forms of cytochrome c 4. Biochem J 252, 427–435.
    [Google Scholar]
  52. Price-Whelan, A., Dietrich, L. E. P. & Newman, D. K. ( 2006; ). Rethinking ‘secondary’ metabolism: physiological roles for phenazine antibiotics. Nat Chem Biol 2, 71–78.[CrossRef]
    [Google Scholar]
  53. Schlegel, K., Taraz, K. & Budzikiewicz, H. ( 2004; ). The stereoisomers of pyochelin, a siderophore of Pseudomonas aeruginosa. Biometals 17, 409–414.[CrossRef]
    [Google Scholar]
  54. Schuster, M., Lostroh, C. P., Ogi, T. & Greenberg, E. P. ( 2003; ). Identification, timing, and signal specificity of Pseudomonas aeruginosa quorum-controlled genes: a transcriptome analysis. J Bacteriol 185, 2066–2079.[CrossRef]
    [Google Scholar]
  55. Schwyn, B. & Neilands, J. B. ( 1987; ). Universal chemical assay for the detection and determination of siderophores. Anal Biochem 160, 47–56.[CrossRef]
    [Google Scholar]
  56. Shaw, P. D., Ping, G., Daly, S. L., Cha, C., Cronan, J. E., Jr, Rinehart, K. L. & Farrand, S. K. ( 1997; ). Detecting and characterizing N-acyl-homoserine lactone signal molecules by thin-layer chromatography. Proc Natl Acad Sci U S A 94, 6036–6041.[CrossRef]
    [Google Scholar]
  57. Siegmund, I. & Wagner, F. ( 1991; ). New method for detecting rhamnolipids excreted by Pseudomonas species during growth on mineral agar. Biotechnol Tech 5, 265–268.[CrossRef]
    [Google Scholar]
  58. Simon, R., Priefer, U. & Puhler, A. ( 1983; ). A broad host range mobilization system for in vivo genetic engineering: transposon mutagenesis in Gram-negative bacteria. Bio/Technol 1, 784–791.[CrossRef]
    [Google Scholar]
  59. Stevens, J. M., Gordon, E. H. & Ferguson, S. J. ( 2004; ). Overproduction of CcmABCDEFGH restores cytochrome c maturation in a DsbD deletion strain of E. coli: another route for reductant? FEBS Lett 576, 81–85.[CrossRef]
    [Google Scholar]
  60. Swift, S., Downie, J. A., Whitehead, N. A., Barnard, A. M., Salmond, G. P. & Williams, P. ( 2001; ). Quorum sensing as a population-density-dependent determinant of bacterial physiology. Adv Microb Physiol 45, 199–270.
    [Google Scholar]
  61. Thöny-Meyer, L. ( 1997; ). Biogenesis of respiratory cytochromes in bacteria. Microbiol Mol Biol Rev 61, 337–376.
    [Google Scholar]
  62. Thöny-Meyer, L. ( 2000; ). Haem-polypeptide interactions during cytochrome c maturation. Biochim Biophys Acta 1459, 316–324.[CrossRef]
    [Google Scholar]
  63. Thöny-Meyer, L. ( 2003; ). A heme chaperone for cytochrome c biogenesis. Biochemistry 42, 13099–13105.[CrossRef]
    [Google Scholar]
  64. Visca, P., Leoni, L., Wilson, M. J. & Lamont, I. L. ( 2002; ). Iron transport and regulation, cell signalling and genomics: lessons from Escherichia coli and Pseudomonas. Mol Microbiol 45, 1177–1190.[CrossRef]
    [Google Scholar]
  65. Visca, P., Imperi, F. & Lamont, I. L. ( 2007; ). Pyoverdine siderophores: from biogenesis to biosignificance. Trends Microbiol 15, 22–30.[CrossRef]
    [Google Scholar]
  66. Voulhoux, R., Filloux, A. & Schalk, I. ( 2006; ). Pyoverdine-mediated iron uptake in Pseudomonas aeruginosa: the Tat system is required for PvdN but not for FpvA transport. J Bacteriol 188, 3317–3323.[CrossRef]
    [Google Scholar]
  67. Wagner, V. E., Bushnell, D., Passador, L., Brooks, A. I. & Iglewski, B. H. ( 2003; ). Microarray analysis of Pseudomonas aeruginosa quorum-sensing regulons: effects of growth phase and environment. J Bacteriol 185, 2080–2095.[CrossRef]
    [Google Scholar]
  68. Wayne, L. G. & Diaz, G. A. ( 1986; ). A double staining method for differentiating between two classes of mycobacterial catalase in polyacrylamide electrophoresis gels. Anal Biochem 157, 89–92.[CrossRef]
    [Google Scholar]
  69. Windgassen, M., Urban, A. & Jaeger, K. E. ( 2000; ). Rapid gene inactivation in Pseudomonas aeruginosa. FEMS Microbiol Lett 193, 201–205.[CrossRef]
    [Google Scholar]
  70. Winson, M. K., Cámara, M., Latifi, A., Foglino, M., Chhabra, S. R., Daykin, M., Bally, M., Chapon, V., Salmond, G. P. & other authors ( 1995; ). Multiple N-acyl-l-homoserine lactone signal molecules regulate production of virulence determinants and secondary metabolites in Pseudomonas aeruginosa. Proc Natl Acad Sci U S A 92, 9427–9431.[CrossRef]
    [Google Scholar]
  71. Winzer, K. & Williams, P. ( 2001; ). Quorum sensing and the regulation of gene expression in pathogenic bacteria. Int J Med Microbiol 291, 131–143.[CrossRef]
    [Google Scholar]
  72. Withers, H., Swift, S. & Williams, P. ( 2001; ). Quorum sensing as an integral component of gene regulatory networks in Gram-negative bacteria. Curr Opin Microbiol 4, 186–193.[CrossRef]
    [Google Scholar]
  73. Yates, E. A., Philipp, B., Buckley, C., Atkinson, S., Chhabra, S. R., Sockett, R. E., Goldner, M., Dessaux, Y., Cámara, M. & other authors ( 2002; ). N-acyl homoserine lactones undergo lactonolysis in a pH-, temperature-, and acyl chain length-dependent manner during growth of Yersinia pseudotuberculosis and Pseudomonas aeruginosa. Infect Immun 70, 5635–5646.[CrossRef]
    [Google Scholar]
  74. Yurgel, S. N., Berrocal, J., Wilson, C. & Kahn, M. L. ( 2007; ). Pleiotropic effects of mutations that alter the Sinorhizobium meliloti cytochrome c respiratory system. Microbiology 153, 399–410.[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.2007/008268-0
Loading
/content/journal/micro/10.1099/mic.0.2007/008268-0
Loading

Data & Media loading...

Supplements

[PDF file](9 KB)

PDF

[PDF file](165 KB)

PDF

[AVI file](4170 KB)

[AVI file](4169 KB)

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error