1887

Abstract

The -dependent transcriptional regulator SfnR is essential for the use of dimethyl sulfone (DMSO) as a sulfur source by DS1. SfnR binds three SfnR-binding sites (sites 1, 2 and 3) within an intergenic region of the divergently transcribed and gene clusters. The site 1 region, proximal to the gene, is indispensable for the expression of the operon, which encodes components of DMSO monooxygenase. We investigated the transcriptional regulation of the operon and possible functions of the gene. RT-PCR analysis revealed that the gene cluster, which is similar to homologues of the acyl-CoA dehydrogenase family, was transcribed as an operon, and its expression was regulated by SfnR under conditions of sulfate starvation. Deletion analyses using as a reporter demonstrated that the region up to at least −138 bp from the transcription start point of (containing sites 2 and 3) was necessary for the expression of the operon. A growth test of the -disrupted mutant revealed the possibility that may be involved in the use of methanethiol as a sulfur source.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.2007/008151-0
2007-09-01
2019-11-18
Loading full text...

Full text loading...

/deliver/fulltext/micro/153/9/3091.html?itemId=/content/journal/micro/10.1099/mic.0.2007/008151-0&mimeType=html&fmt=ahah

References

  1. Arsene, C., Barnes, I., Becker, K. H., Schneider, W. F., Wallington, T. T., Mihalopoulos, N. & Patroescu-Klotz, I. V. ( 2002; ). Formation of methane sulfinic acid in the gas-phase: OH-radical initiated oxidation of dimethyl sulfoxide. Environ Sci Technol 36, 5155–5163.[CrossRef]
    [Google Scholar]
  2. Autry, A. R. & Fitzgerald, J. W. ( 1990; ). Sulfonate S: a major form of forest soil organic sulfur. Biol Fertil Soils 10, 50–56.
    [Google Scholar]
  3. Bardouki, H., da Rosa, M. B., Mihalopoulos, N., Palm, W.-U. & Zetzsch, C. ( 2002; ). Kinetics and mechanism of the oxidation of dimethyl sulfoxide (DMSO) and methanesulfinate (MSI) by OH radicals in aqueous medium. Atmos Environ 36, 4627–4634.[CrossRef]
    [Google Scholar]
  4. Cases, I., Ussery, D. W. & de Lorenzo, V. ( 2003; ). The σ 54 regulon (sigmulon) of Pseudomonas putida. Environ Microbiol 5, 1281–1293.[CrossRef]
    [Google Scholar]
  5. Coppée, J.-Y., Auger, S., Turlin, E., Sekowska, A., Le Caer, J.-P., Labas, V., Vanger, V., Danchin, A. & Martin-Verstraete, I. ( 2001; ). Sulfur-limitation-regulated proteins in Bacillus subtilis: a two-dimensional gel electrophoresis study. Microbiology 147, 1631–1640.
    [Google Scholar]
  6. Davison, J., Brunel, F., Phanopoulos, A., Prozzi, D. & Terpstra, P. ( 1992; ). Cloning and sequencing of Pseudomonas genes determining sodium dodecyl sulfate biodegradation. Gene 114, 19–24.[CrossRef]
    [Google Scholar]
  7. Delic-Attree, I., Toussaint, B., Garin, J. & Vignais, P. M. ( 1997; ). Cloning, sequence and mutagenesis of the structural gene of Pseudomonas aeruginosa CysB, which can activate algD transcription. Mol Microbiol 24, 1275–1284.[CrossRef]
    [Google Scholar]
  8. Eichhorn, E., van der Ploeg, J. R. & Leisinger, T. ( 1999; ). Characterization of a two-component alkanesulfonate monooxygenase from Escherichia coli. J Biol Chem 274, 26639–26646.[CrossRef]
    [Google Scholar]
  9. Endoh, T., Kasuga, K., Horinouchi, M., Yoshida, T., Habe, H., Nojiri, H. & Omori, T. ( 2003a; ). Characterization and identification of genes essential for dimethyl sulfide utilization in Pseudomonas putida strain DS1. Appl Microbiol Biotechnol 62, 83–91.[CrossRef]
    [Google Scholar]
  10. Endoh, T., Habe, H., Yoshida, T., Nojiri, H. & Omori, T. ( 2003b; ). A CysB-regulated and σ 54-dependent regulator, SfnR, is essential for dimethyl sulfone metabolism of Pseudomonas putida strain DS1. Microbiology 149, 991–1000.[CrossRef]
    [Google Scholar]
  11. Endoh, T., Habe, H., Nojiri, H., Yamane, H. & Omori, T. ( 2005; ). The σ 54-dependent transcriptional activator SfnR regulates the expression of the Pseudomonas putida sfnFG operon responsible for dimethyl sulphone utilization. Mol Microbiol 55, 897–911.
    [Google Scholar]
  12. Hummerjohann, J., Laudenbach, S., Rétey, J., Leisinger, T. & Kertesz, M. A. ( 2000; ). The sulfur-regulated arylsulfatase gene cluster of Pseudomonas aeruginosa, a new member of the cys regulon. J Bacteriol 182, 2055–2058.[CrossRef]
    [Google Scholar]
  13. Iwanicka-Nowicka, R., Zielak, A., Cook, A. M., Thomas, M. S. & Hryniewicz, M. A. ( 2007; ). Regulation of sulfur assimilation pathways in Burkholderia cenocepacia: identification of transcription factors CysB and SsuR and their role in control of target genes. J Bacteriol 189, 1675–1688.[CrossRef]
    [Google Scholar]
  14. Kahnert, A., Vermeij, P., Wietek, C., James, C. P., Leisinger, T. & Kertesz, M. A. ( 2000; ). The ssu locus plays a key role in organosulfur metabolism in Pseudomonas putida S-313. J Bacteriol 182, 2869–2878.[CrossRef]
    [Google Scholar]
  15. Kahnert, A., Mirleau, P., Wait, R. & Kertesz, M. A. ( 2002; ). The LysR-type regulator SftR is involved in soil survival and sulphate ester metabolism in Pseudomonas putida. Environ Microbiol 4, 225–237.[CrossRef]
    [Google Scholar]
  16. Kertesz, M. A. ( 2000; ). Riding the sulfur cycle – metabolism of sulfonates and sulfate esters in gram-negative bacteria. FEMS Microbiol Rev 24, 135–175.
    [Google Scholar]
  17. Kertesz, M. A. ( 2004; ). Metabolism of sulphur-containing organic compounds. In Pseudomonas, vol. 3, pp. 323–357. Edited by J.-L. Ramos. New York: Kluwer Academic/Plenum Publishers.
  18. Kertesz, M. A., Leisinger, T. & Cook, A. M. ( 1993; ). Proteins induced by sulfate limitation in Escherichia coli, Pseudomonas putida, or Staphylococcus aureus. J Bacteriol 175, 1187–1190.
    [Google Scholar]
  19. Miller, J. H. ( 1972; ). Experiments in Molecular Genetics. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory.
  20. Minami, K. ( 1982; ). Volatilization of sulfur from paddy soils. Jpn Agric Res Q 15, 167–171.
    [Google Scholar]
  21. Omori, T., Saiki, Y., Kasuga, K. & Kodama, T. ( 1995; ). Desulfurization of alkyl and aromatic sulfides and sulfonates by dibenzothiophene-desulfurizing Rhodococcus sp. strain SY1. Biosci Biotechnol Biochem 59, 1195–1198.[CrossRef]
    [Google Scholar]
  22. Pérez-Martín, J. & de Lorenzo, V. ( 1996; ). Physical and functional analysis of the prokaryotic enhancer of the σ 54-promoters of the TOL plasmid of Pseudomonas putida. J Mol Biol 258, 562–574.[CrossRef]
    [Google Scholar]
  23. Reitzer, L. & Schneider, B. L. ( 2001; ). Metabolic context and possible physiological themes of σ 54-dependent genes in Escherichia coli. Microbiol Mol Biol Rev 65, 422–444.[CrossRef]
    [Google Scholar]
  24. Sambrook, J. & Russell, D. W. ( 2001; ). Molecular Cloning: a Laboratory Manual, 3rd edn. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory.
  25. Sukchawalit, R., Battanaviboon, P., Sallabhan, R. & Mongkolsuk, S. ( 1999; ). Construction and characterization of regulated l-arabinose-inducible broad host range expression vectors in Xanthomonas. FEMS Microbiol Lett 181, 217–223.
    [Google Scholar]
  26. Tropel, D. & van der Meer, J. R. ( 2002; ). Identification and physical characterization of the HbpR binding sites of the hbpC and hbpD promoters. J Bacteriol 184, 2914–2924.[CrossRef]
    [Google Scholar]
  27. van der Ploeg, J. R., Weiss, M. A., Saller, E., Nashimoto, H., Saito, N., Kertesz, M. A. & Leisinger, T. ( 1996; ). Identification of sulfate starvation-regulated genes in Escherichia coli: a gene cluster involved in the utilization of taurine as a sulfur source. J Bacteriol 178, 5438–5446.
    [Google Scholar]
  28. van der Ploeg, J. R., Iwanicka-Nowicka, R., Bykowsky, T., Hryniewicz, M. M. & Leisinger, T. ( 1999; ). The Escherichia coli ssuEADCB gene cluster is required for the utilization of sulfur from aliphatic sulfonates and is regulated by the transcriptional activator Cbl. J Biol Chem 274, 29358–29365.[CrossRef]
    [Google Scholar]
  29. Vermeij, P. & Kertesz, M. A. ( 1999; ). Pathways of assimilative sulfur metabolism in Pseudomonas putida. J Bacteriol 181, 5833–5837.
    [Google Scholar]
  30. Vermeij, P., Wietek, C., Kahnert, A., Wüest, T. & Kertesz, M. A. ( 1999; ). Genetic organization of sulfur-controlled aryl desulfonation in Pseudomonas putida S-313. Mol Microbiol 32, 913–926.[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.2007/008151-0
Loading
/content/journal/micro/10.1099/mic.0.2007/008151-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error