1887

Abstract

The physiological role of Cnh1, a member of the Na/H antiporter family, was characterized. Though Cnh1p had broad substrate specificity and mediated efflux of at least four alkali metal cations upon heterologous expression in , its presence in cells was important especially for potassium homeostasis. In , Cnh1p tagged with GFP was localized in the plasma membrane of cells growing as both yeasts and hyphae. Deletion of alleles did not affect tolerance to NaCl, LiCl or CsCl, but resulted in increased sensitivity to high external concentrations of KCl and RbCl. The potassium and rubidium tolerance of a homozygous mutant was fully restored by reintegration of into the genome. The higher sensitivity of the mutant to external KCl was caused by a lower K efflux from these cells. Together, the functional characterization of the Cnh1 antiporter in revealed that this antiporter plays a significant role in physiology. It ensures potassium and rubidium tolerance and participates in the regulation of intracellular potassium content of cells.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.2007/008011-0
2007-08-01
2019-10-21
Loading full text...

Full text loading...

/deliver/fulltext/micro/153/8/2603.html?itemId=/content/journal/micro/10.1099/mic.0.2007/008011-0&mimeType=html&fmt=ahah

References

  1. Bain, J. M., Stubberfield, C. & Gow, N. A. ( 2001; ). Ura-status-dependent adhesion of Candida albicans mutants. FEMS Microbiol Lett 204, 323–328.[CrossRef]
    [Google Scholar]
  2. Banuelos, M. A., Sychrová, H., Bleykasten-Grosshans, C., Souciet, J. L. & Potier, S. ( 1998; ). The Nha1 antiporter of Saccharomyces cerevisiae mediates sodium and potassium efflux. Microbiology 144, 2749–2758.[CrossRef]
    [Google Scholar]
  3. Banuelos, M. A., Ramos, J., Calero, F., Braun, V. & Potier, S. ( 2002; ). Cation/H+ antiporters mediate potassium and sodium fluxes in Pichia sorbitophila. Cloning of the PsNHA1 and PsNHA2 genes and expression in Saccharomyces cerevisiae. Yeast 19, 1365–1372.[CrossRef]
    [Google Scholar]
  4. Benito, B., Garciadeblas, B., Schreier, P. & Rodriguez-Navarro, A. ( 2004; ). Novel P-type ATPases mediate high-affinity potassium or sodium uptake in fungi. Eukaryot Cell 3, 359–368.[CrossRef]
    [Google Scholar]
  5. Biswas, S. K., Yokoyama, K., Nishimura, K. & Miyaji, M. ( 2000; ). Effect of pH, carbon source and K+ on the Na+-inhibited germ tube formation of Candida albicans. Med Mycol 38, 363–369.[CrossRef]
    [Google Scholar]
  6. Brett, C. L., Tukaye, D. N., Mukherjee, S. & Rao, R. ( 2005; ). The yeast endosomal Na+(K+)/H+ exchanger Nhx1 regulates cellular pH to control vesicle trafficking. Mol Biol Cell 16, 1396–1405.[CrossRef]
    [Google Scholar]
  7. Camacho, M., Ramos, J. & Rodriguez-Navarro, A. ( 1981; ). Potassium requirements of Saccharomyces cerevisiae. Curr Microbiol 6, 295–299.[CrossRef]
    [Google Scholar]
  8. Fonzi, W. A. & Irwin, M. Y. ( 1993; ). Isogenic strain construction and gene mapping in Candida albicans. Genetics 134, 717–728.
    [Google Scholar]
  9. Garciadeblas, B., Rubio, F., Quintero, F. J., Banuelos, M. A., Haro, R. & Rodriguez-Navarro, A. ( 1993; ). Differential expression of two genes encoding isoforms of the ATPase involved in sodium efflux in Saccharomyces cerevisiae. Mol Gen Genet 236, 363–368.
    [Google Scholar]
  10. Gola, S., Martin, R., Walther, A., Dunkler, A. & Wendland, J. ( 2003; ). New modules for PCR-based gene targeting in Candida albicans: rapid and efficient gene targeting using 100 bp of flanking homology region. Yeast 20, 1339–1347.[CrossRef]
    [Google Scholar]
  11. Hermann, P., Forgacs, K., Gal, E., Lenkey, B., Nagy, G. & Rozgonyi, F. ( 2003; ). Effects of alkali metal ions on some virulence traits of Candida albicans. Folia Microbiol (Praha) 48, 173–176.[CrossRef]
    [Google Scholar]
  12. Jones, T., Federspiel, N. A., Chibana, H., Dungan, J., Kalman, S., Magee, B. B., Newport, G., Thorstenson, Y. R., Agabian, N. & other authors ( 2004; ). The diploid genome sequence of Candida albicans. Proc Natl Acad Sci U S A 101, 7329–7334.[CrossRef]
    [Google Scholar]
  13. Kaur, S. & Mishra, P. ( 1991; ). Dimorphism-associated changes in plasma membrane H+-ATPase activity of Candida albicans. Arch Microbiol 156, 412–415.[CrossRef]
    [Google Scholar]
  14. Kinclova, O., Potier, S. & Sychrová, H. ( 2001a; ). The Zygosaccharomyces rouxii strain CBS732 contains only one copy of the HOG1 and the SOD2 genes. J Biotechnol 88, 151–158.[CrossRef]
    [Google Scholar]
  15. Kinclova, O., Potier, S. & Sychrová, H. ( 2001b; ). The Candida albicans Na+/H+ antiporter exports potassium and rubidium. FEBS Lett 504, 11–15.[CrossRef]
    [Google Scholar]
  16. Kinclova, O., Ramos, J., Potier, S. & Sychrová, H. ( 2001c; ). Functional study of the Saccharomyces cerevisiae Nha1p C-terminus. Mol Microbiol 40, 656–668.[CrossRef]
    [Google Scholar]
  17. Kinclova, O., Potier, S. & Sychrová, H. ( 2002; ). Difference in substrate specificity divides the yeast alkali-metal-cation/H+ antiporters into two subfamilies. Microbiology 148, 1225–1232.
    [Google Scholar]
  18. Kinclova-Zimmermannova, O. & Sychrová, H. ( 2006; ). Functional study of the Nha1p C-terminus: involvement in cell response to changes in external osmolarity. Curr Genet 49, 229–236.[CrossRef]
    [Google Scholar]
  19. Kinclova-Zimmermannova, O., Zavrel, M. & Sychrová, H. ( 2005; ). Identification of conserved prolyl residue important for transport activity and the substrate specificity range of yeast plasma membrane Na+/H+ antiporters. J Biol Chem 280, 30638–30647.[CrossRef]
    [Google Scholar]
  20. Kinclova-Zimmermannova, O., Gaskova, D. & Sychrová, H. ( 2006; ). The Na+,K+/H+-antiporter Nha1 influences the plasma membrane potential of Saccharomyces cerevisiae. FEMS Yeast Res 6, 792–800.[CrossRef]
    [Google Scholar]
  21. Lay, J., Henry, L. K., Clifford, J., Koltin, Y., Bulawa, C. E. & Becker, J. M. ( 1998; ). Altered expression of selectable marker URA3 in gene-disrupted Candida albicans strains complicates interpretation of virulence studies. Infect Immun 66, 5301–5306.
    [Google Scholar]
  22. Monk, B. C., Niimi, M. & Shepherd, M. G. ( 1993; ). The Candida albicans plasma membrane and H+-ATPase during yeast growth and germ tube formation. J Bacteriol 175, 5566–5574.
    [Google Scholar]
  23. Murad, A. M., Lee, P. R., Broadbent, I. D., Barelle, C. J. & Brown, A. J. ( 2000; ). CIp10, an efficient and convenient integrating vector for Candida albicans. Yeast 16, 325–327.[CrossRef]
    [Google Scholar]
  24. Northrop, F. D., Ljubojevic, S. & Davies, J. M. ( 1997; ). Influence of Na+ and anions on the dimorphic transition of Candida albicans. Microbiology 143, 3757–3765.[CrossRef]
    [Google Scholar]
  25. Odds, F. C. ( 1985; ). Morphogenesis in Candida albicans. Crit Rev Microbiol 12, 45–93.[CrossRef]
    [Google Scholar]
  26. Ohgaki, R., Nakamura, N., Mitsui, K. & Kanazawa, H. ( 2005; ). Characterization of the ion transport activity of the budding yeast Na+/H+ antiporter, Nha1p, using isolated secretory vesicles. Biochim Biophys Acta 1712, 185–196.[CrossRef]
    [Google Scholar]
  27. Orlowski, J. & Grinstein, S. ( 1997; ). Na+/H+ exchangers of mammalian cells. J Biol Chem 272, 22373–22376.[CrossRef]
    [Google Scholar]
  28. Padan, E., Venturi, M., Gerchman, Y. & Dover, N. ( 2001; ). Na+/H+ antiporters. Biochim Biophys Acta 1505, 144–157.[CrossRef]
    [Google Scholar]
  29. Papouskova, K. & Sychrová, H. ( 2006; ). Yarrowia lipolytica possesses two plasma membrane alkali metal cation/H+ antiporters with different functions in cell physiology. FEBS Lett 580, 1971–1976.[CrossRef]
    [Google Scholar]
  30. Papouskova, K. & Sychrová, H. ( 2007; ). Schizosaccharomyces pombe possesses two plasma membrane alkali metal cation/H+ antiporters differing in their substrate specificity. FEMS Yeast Res 7, 188–195.[CrossRef]
    [Google Scholar]
  31. Proft, M. & Struhl, K. ( 2004; ). MAP kinase-mediated stress relief that precedes and regulates the timing of transcriptional induction. Cell 118, 351–361.[CrossRef]
    [Google Scholar]
  32. Ramos, J. & Rodriguez-Navarro, A. ( 1986; ). Regulation and interconversion of the potassium transport systems of Saccharomyces cerevisiae as revealed by rubidium transport. Eur J Biochem 154, 307–311.[CrossRef]
    [Google Scholar]
  33. Rodriguez-Navarro, A. ( 2000; ). Potassium transport in fungi and plants. Biochim Biophys Acta 1469, 1–30.[CrossRef]
    [Google Scholar]
  34. Silva-Graca, M., Neves, L. & Lucas, C. ( 2003; ). Outlines for the definition of halotolerance/halophily in yeasts: Candida versatilis (halophila) CBS4019 as the archetype?. FEMS Yeast Res 3, 347–362.[CrossRef]
    [Google Scholar]
  35. Simon, E., Clotet, J., Calero, F., Ramos, J. & Arino, J. ( 2001; ). A screening for high copy suppressors of the sit4 hal3 synthetically lethal phenotype reveals a role for the yeast Nha1 antiporter in cell cycle regulation. J Biol Chem 276, 29740–29747.[CrossRef]
    [Google Scholar]
  36. Soong, T. W., Yong, T. F., Ramanan, N. & Wang, Y. ( 2000; ). The Candida albicans antiporter gene CNH1 has a role in Na+ and H+ transport, salt tolerance, and morphogenesis. Microbiology 146, 1035–1044.
    [Google Scholar]
  37. Stewart, E., Gow, N. A. & Bowen, D. V. ( 1988; ). Cytoplasmic alkalinization during germ tube formation in Candida albicans. J Gen Microbiol 134, 1079–1087.
    [Google Scholar]
  38. Sudbery, P., Gow, N. & Berman, J. ( 2004; ). The distinct morphogenic states of Candida albicans. Trends Microbiol 12, 317–324.[CrossRef]
    [Google Scholar]
  39. Sychrová, H. ( 2004; ). Yeast as a model organism to study transport and homeostasis of alkali metal cations. Physiol Res 53, S91–S98.
    [Google Scholar]
  40. Sychrová, H., Ramirez, J. & Pena, A. ( 1999; ). Involvement of Nha1 antiporter in regulation of intracellular pH in Saccharomyces cerevisiae. FEMS Microbiol Lett 171, 167–172.[CrossRef]
    [Google Scholar]
  41. Velkova, K. & Sychrová, H. ( 2006; ). The Debaryomyces hansenii NHA1 gene encodes a plasma membrane alkali-metal-cation antiporter with broad substrate specificity. Gene 369, 27–34.[CrossRef]
    [Google Scholar]
  42. Walther, A. & Wendland, J. ( 2003; ). An improved transformation protocol for the human fungal pathogen Candida albicans. Curr Genet 42, 339–343.[CrossRef]
    [Google Scholar]
  43. Watanabe, H., Azuma, M., Igarashi, K. & Ooshima, H. ( 2006; ). Relationship between cell morphology and intracellular potassium concentration in Candida albicans. J Antibiot (Tokyo) 59, 281–287.[CrossRef]
    [Google Scholar]
  44. Wilson, R. B., Davis, D. & Mitchell, A. P. ( 1999; ). Rapid hypothesis testing with Candida albicans through gene disruption with short homology regions. J Bacteriol 181, 1868–1874.
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.2007/008011-0
Loading
/content/journal/micro/10.1099/mic.0.2007/008011-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error