1887

Abstract

SipB (593 aa), one of the invasion proteins (Sips), is secreted via the pathogenicity island 1 (SPI-1) type III secretion system (T3SS). Here, we report the delineation of several functional regions present in the SipB protein. Our data show that residues 3–8 of the SipB protein are essential for its secretion from the bacterial cell and that the SicA chaperone, which is important to ensure stability of SipB and SipC in the bacterial cytosol, binds to SipB somewhere between amino acids 80 and100 of the SipB N-terminal region. Interestingly, the N-terminal region (residues 1–160) of SipB (SipB160) cannot be secreted via the SPI-1 T3SS, but fusion of the C-terminal amphipathic region (residues 300–593) to SipB160 can restore secretion via this system.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.2007/007872-0
2007-09-01
2020-04-09
Loading full text...

Full text loading...

/deliver/fulltext/micro/153/9/2998.html?itemId=/content/journal/micro/10.1099/mic.0.2007/007872-0&mimeType=html&fmt=ahah

References

  1. Auvray F., Thomas J., Fraser G. M., Hughes C.. 2001; Flagellin polymerisation control by a cytosolic export chaperone. J Mol Biol308:221–229
    [Google Scholar]
  2. Bennett J. C., Hughes C.. 2000; From flagellum assembly to virulence: the extended family of type III export chaperones. Trends Microbiol8:202–204
    [Google Scholar]
  3. Bennett J. C., Thomas J., Fraser G. M., Hughes C.. 2001; Substrate complexes and domain organization of the Salmonella flagellar export chaperones FlgN and FliT. Mol Microbiol39:781–791
    [Google Scholar]
  4. Birtalan S. C., Phillips R. M., Ghosh P.. 2002; Three-dimensional secretion signals in chaperone-effector complexes of bacterial pathogens. Mol Cell9:971–980
    [Google Scholar]
  5. Bullas L. R., Ryu J. I.. 1983; Salmonella typhimurium LT2 strains which are r m+ for all three chromosomally located systems of DNA restriction and modification. J Bacteriol156:471–474
    [Google Scholar]
  6. Cheng L. W., Anderson D. M., Schneewind O.. 1997; Two independent type III secretion mechanisms for YopE in Yersinia enterocolitica. Mol Microbiol24:757–765
    [Google Scholar]
  7. Collazo C. M., Galan J. E.. 1997; The invasion-associated type III system of Salmonella typhimurium directs the translocation of Sip proteins into the host cell. Mol Microbiol24:747–756
    [Google Scholar]
  8. Cornelis G. R., Van Gijsegem F.. 2000; Assembly and function of type III secretory systems. Annu Rev Microbiol54:735–774
    [Google Scholar]
  9. Curtiss R. III, Porter S. B., Munson M., Tinge S. A., Hassan J. O., Gentry-Weeks C., Kelly S. M.. 1991; Nonrecombinant and recombinant avirulent salmonella vaccines for poultry. In Colonization Control of Human Bacterial Enteropathogens in Poultry pp169–198 Edited by Blankenship L. C., Bailey J. H. S., Cox N. A., Stern N. J., Meinersmann R. J. New York: Academic Press;
  10. Darwin K. H., Miller V. L.. 2001; Type III secretion chaperone-dependent regulation: activation of virulence genes by SicA and InvF in Salmonella typhimurium. EMBO J20:1850–1862
    [Google Scholar]
  11. Davis R. W., Bolstein D., Roth J. R.. 1980; Advanced Bacterial Genetics Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
  12. Eichelberg K., Galán J. E.. 2000; The flagellar sigma factor FliA ( σ28) regulates the expression of Salmonella genes associated with the centisome 63 type III secretion system. Infect Immun68:2735–2743
    [Google Scholar]
  13. Francis M. S., Wolf-Watz H.. 1998; YopD of Yersinia pseudotuberculosis is translocated into the cytosol of HeLa epithelial cells: evidence of a structural domain necessary for translocation. Mol Microbiol29:799–813
    [Google Scholar]
  14. Fraser G. M., Bennett J. C., Hughes C.. 1999; Substrate-specific binding of hook-associated proteins by FlgN and FliT, putative chaperones for flagellum assembly. Mol Microbiol32:569–580
    [Google Scholar]
  15. Fu Y., Galan J. E.. 1998; Identification of a specific chaperone for SptP, a substrate of the centisome 63 type III secretion system of Salmonella typhimurium. J Bacteriol180:3393–3399
    [Google Scholar]
  16. Galán J. E.. 2001; Salmonella interactions with host cells: type III secretion at work. Annu Rev Cell Dev Biol17:53–86
    [Google Scholar]
  17. Galán J. E., Collmer A.. 1999; Type III secretion machines: bacterial devices for protein delivery into host cells. Science284:1322–1328
    [Google Scholar]
  18. Galan J. E., Curtiss R. III. 1989; Cloning and molecular characterization of genes whose products allow Salmonella typhimurium to penetrate tissue culture cells. Proc Natl Acad Sci U S A86:6383–6387
    [Google Scholar]
  19. Galan J. E., Ginocchio C., Costeas P.. 1992; Molecular and functional characterization of the Salmonella invasion gene invA: homology of InvA to members of a new protein family. J Bacteriol174:4338–4349
    [Google Scholar]
  20. Galen J. E., Levine M. M.. 2001; Can a ‘flawless’ live vector vaccine strain be engineered?. Trends Microbiol9:372–376
    [Google Scholar]
  21. Guan K. L., Dixon J. E.. 1991; Eukaryotic proteins expressed in Escherichia coli: an improved thrombin cleavage and purification procedure of fusion proteins with glutathione S-transferase. Anal Biochem192:262–267
    [Google Scholar]
  22. Hayward R. D., Koronakis V.. 1999; Direct nucleation and bundling of actin by the SipC protein of invasive Salmonella. EMBO J18:4926–4934
    [Google Scholar]
  23. Hayward R. D., McGhie E. J., Koronakis V.. 2000; Membrane fusion activity of purified SipB, a Salmonella surface protein essential for mammalian cell invasion. Mol Microbiol37:727–739
    [Google Scholar]
  24. Hensel M., Shea J. E., Gleeson C., Jones M. D., Dalton E., Holden D. W.. 1995; Simultaneous identification of bacterial virulence genes by negative selection. Science269:400–403
    [Google Scholar]
  25. Hersh D., Monack D. M., Smith M. R., Ghori N., Falkow S., Zychlinsky A.. 1999; The Salmonella invasin SipB induces macrophage apoptosis by binding to caspase-1. Proc Natl Acad Sci U S A96:2396–2401
    [Google Scholar]
  26. Hueck C. J.. 1998; Type III protein secretion systems in bacterial pathogens of animals and plants. Microbiol Mol Biol Rev62:379–433
    [Google Scholar]
  27. Igwe E. I., Geginat G., Russmann H.. 2002; Concomitant cytosolic delivery of two immunodominant listerial antigens by Salmonella enterica serovar Typhimurium confers superior protection against murine listeriosis. Infect Immun70:7114–7119
    [Google Scholar]
  28. Kimbrough T. G., Miller S. I.. 2002; Assembly of the type III secretion needle complex of Salmonella typhimurium. Microbes Infect4:75–82
    [Google Scholar]
  29. Kubori T., Galan J. E.. 2002; Salmonella type III secretion-associated protein InvE controls translocation of effector proteins into host cells. J Bacteriol184:4699–4708
    [Google Scholar]
  30. Lee S. H., Galan J. E.. 2004; Salmonella type III secretion-associated chaperones confer secretion-pathway specificity. Mol Microbiol51:483–495
    [Google Scholar]
  31. Lloyd S. A., Norman M., Rosqvist R., Wolf-Watz H.. 2001; Yersinia YopE is targeted for type III secretion by N-terminal, not mRNA, signals. Mol Microbiol39:520–531
    [Google Scholar]
  32. McGhie E. J., Hume P. J., Hayward R. D., Torres J., Koronakis V.. 2002; Topology of the Salmonella invasion protein SipB in a model bilayer. Mol Microbiol44:1309–1321
    [Google Scholar]
  33. Michiels T., Cornelis G. R.. 1991; Secretion of hybrid proteins by the Yersinia Yop export system. J Bacteriol173:1677–1685
    [Google Scholar]
  34. Neyt C., Cornelis G. R.. 1999; Role of SycD, the chaperone of the Yersinia Yop translocators YopB and YopD. Mol Microbiol31:143–156
    [Google Scholar]
  35. Ochman H., Soncini F. C., Solomon F., Groisman E. A.. 1996; Identification of a pathogenicity island required for Salmonella survival in host cells. Proc Natl Acad Sci U S A93:7800–7804
    [Google Scholar]
  36. Page A. L., Fromont-Racine M., Sansonetti P., Legrain P., Parsot C.. 2001; Characterization of the interaction partners of secreted proteins and chaperones of Shigella flexneri. Mol Microbiol42:1133–1145
    [Google Scholar]
  37. Parsot C., Hamiaux C., Page A. L.. 2003; The various and varying roles of specific chaperones in type III secretion systems. Curr Opin Microbiol6:7–14
    [Google Scholar]
  38. Ramamurthi K. S., Schneewind O.. 2005; A synonymous mutation in Yersinia enterocolitica yopE affects the function of the YopE type III secretion signal. J Bacteriol187:707–715
    [Google Scholar]
  39. Rüssmann H., Shams H., Poblete F., Fu Y., Galán J. E., Donis R. O.. 1998; Delivery of epitopes by the Salmonella type III secretion system for vaccine development. Science281:565–568
    [Google Scholar]
  40. Rüssmann H., Igwe E. I., Sauer J., Hardt W. D., Bubert A., Geginat G.. 2001; Protection against murine listeriosis by oral vaccination with recombinant Salmonella expressing hybrid Yersinia type III proteins. J Immunol167:357–365
    [Google Scholar]
  41. Sambrook J., Fritsch E. F., Maniatis T.. 1989; Molecular Cloning: a Laboratory Manual, 2nd edn. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
  42. Scherer C. A., Cooper E., Miller S. I.. 2000; The Salmonella type III secretion translocon protein SspC is inserted into the epithelial cell plasma membrane upon infection. Mol Microbiol37:1133–1145
    [Google Scholar]
  43. Sory M. P., Boland A., Lambermount I., Cornelis G.. 1995; Identification of the YopE and YopH domains required for secretion and internalization into the cytosol of macrophages, using the cyaA gene fusion approach. Proc Natl Acad Sci U S A92:11998–12002
    [Google Scholar]
  44. Stebbins C. E., Galán J. E.. 2001; Maintenance of an unfolded polypeptide by a cognate chaperone in bacterial type III secretion. Nature414:77–81
    [Google Scholar]
  45. Stecher B., Hapfelmeier S., Muller C., Kremer M., Stallmach T., Hardt W. D.. 2004; Flagella and chemotaxis are required for efficient induction of Salmonella enterica serovar Typhimurium colitis in streptomycin-pretreated mice. Infect Immun72:4138–4150
    [Google Scholar]
  46. Tengel T., Sethson I., Francis M. S.. 2002; Conformational analysis by CD and NMR spectroscopy of a peptide encompassing the amphipathic domain of YopD from Yersinia. Eur J Biochem269:3659–3668
    [Google Scholar]
  47. Tucker S. C., Galan J. E.. 2000; Complex function for SicA, a Salmonella enterica serovar Typhimurium type III secretion-associated chaperone. J Bacteriol182:2262–2268
    [Google Scholar]
  48. Wattiau P., Woestyn S., Cornelis G. R.. 1996; Customized secretion chaperones in pathogenic bacteria. Mol Microbiol20:255–262
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.2007/007872-0
Loading
/content/journal/micro/10.1099/mic.0.2007/007872-0
Loading

Data & Media loading...

Most cited this month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error