1887

Abstract

Alterations to the composition or architecture of the mycobacterial cell envelope can affect the macrophage infectivity of the bacillus. To further characterize the mycobacterial gene products that modulate the interaction with host cells, we employed transposon mutagenesis and screened for mutants that demonstrated an enhanced binding affinity toward macrophages. After successive rounds of mutant selection and enrichment, a total of five mutants were isolated that harboured gene disruptions within loci involved in lipid synthetic pathways as well as genes coding for putative hypothetical proteins. One mutant in particular, with a disruption in the Rv3826 gene (), was repeatedly isolated during library screening. Analysis of the cell envelope constituents of the Tn : :  strain revealed a lack of sulfolipid production which was restored following complementation with the wild-type gene.

Keyword(s): SL-1, sulfolipid 1
Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.2007/007864-0
2007-09-01
2020-08-08
Loading full text...

Full text loading...

/deliver/fulltext/micro/153/9/3133.html?itemId=/content/journal/micro/10.1099/mic.0.2007/007864-0&mimeType=html&fmt=ahah

References

  1. Bardarov S., Kriakov J., Carriere C., Yu S., Vaamonde C., McAdam R. A., Bloom B. R., Hatfull G. F., Jacobs W. R. Jr. 1997; Conditionally replicating mycobacteriophages: a system for transposon delivery to Mycobacterium tuberculosis. Proc Natl Acad Sci U S A94:10961–10966
    [Google Scholar]
  2. Bateman A., Coin L., Durbin R., Finn R. D., Hollich V., Griffiths-Jones S., Khanna A., Marshall M., Moxon S.. other authors 2004; The Pfam protein families database. Nucleic Acids Res32:D138–D141
    [Google Scholar]
  3. Belisle J. T., Sonnenberg M. G.. 1998; Isolation of genomic DNA from mycobacteria. In Methods in Molecular Biology: Mycobacteria Protocols pp31–44 Edited by Parish T., Stoker N. G.. Totowa, NJ: Humana Press;
  4. Besra G. S.. 1998; Preparation of cell wall fractions from mycobacteria. In Methods in Molecular Biology: Mycobacteria Protocols pp91–107 Edited by Parish T., Stoker N. G.. Totowa, NJ: Humana Press;
  5. Camacho L. R., Ensergueix D., Perez E., Gicquel B., Guilhot C.. 1999; Identification of a virulence gene cluster of Mycobacterium tuberculosis by signature-tagged transposon mutagenesis. Mol Microbiol34:257–267
    [Google Scholar]
  6. Cole S. T., Brosch R., Parkhill J., Garnier T., Churcher C., Harris D., Gordon S. V., Eiglmeier K., Gas S.. other authors 1998; Deciphering the biology of Mycobacterium tuberculosis from the complete genome sequence. Nature393:537–544
    [Google Scholar]
  7. Converse S. E., Mougous J. D., Leavell M. D., Leary J. A., Bertozzi C. R., Cox J. S.. 2003; MmpL8 is required for sulfolipid-1 biosynthesis and Mycobacterium tuberculosis virulence. Proc Natl Acad Sci U S A100:6121–6126
    [Google Scholar]
  8. Cox J. S., Chen B., McNeil M., Jacobs W. R. Jr. 1999; Complex lipid determines tissue-specific replication of Mycobacterium tuberculosis in mice. Nature402:79–83
    [Google Scholar]
  9. Dobson G., Minnikin D. E., Minnkin S. M., Pharlett J. H., Goodfellow M., Ridell M., Magnusson M.. 1985; Systematic analysis of complex mycobacterial lipids. In Chemical Methods in Bacterial Systematics pp237–265 Edited by Goodfellow M., Minnikin D. E.. London: Academic Press;
    [Google Scholar]
  10. Domenech P., Reed M. B., Dowd C. S., Manca C., Kaplan G., Barry C. E. III. 2004; The role of MmpL8 in sulfatide biogenesis and virulence of Mycobacterium tuberculosis. J Biol Chem279:21257–21265
    [Google Scholar]
  11. Dubey V. S., Sirakova T. D., Kolattukudy P. E.. 2002; Disruption of msl3 abolishes the synthesis of mycolipanoic and mycolipenic acids required for polyacyltrehalose synthesis in Mycobacterium tuberculosis H37Rv and causes cell aggregation. Mol Microbiol45:1451–1459
    [Google Scholar]
  12. Dullaghan E. M., Malloff C. A., Li A. H., Lam W. L., Stokes R. W.. 2002; Two-dimensional bacterial genome display: a method for the genomic analysis of mycobacteria. Microbiology148:3111–3117
    [Google Scholar]
  13. El-Etr S. H., Cirillo J. D.. 2001; Entry mechanisms of mycobacteria. Front Biosci6:D737–D747
    [Google Scholar]
  14. Ernst J. D.. 1998; Macrophage receptors for Mycobacterium tuberculosis. Infect Immun66:1277–1281
    [Google Scholar]
  15. Espinal M. A.. 2003; The global situation of MDR-TB. Tuberculosis (Edinb83:44–51
    [Google Scholar]
  16. Etienne G., Villeneuve C., Billman-Jacobe H., Astarie-Dequeker C., Dupont M. A., Daffe M.. 2002; The impact of the absence of glycopeptidolipids on the ultrastructure, cell surface and cell wall properties, and phagocytosis of Mycobacterium smegmatis. Microbiology148:3089–3100
    [Google Scholar]
  17. Garcia de Viedma D., Lorenzo G., Cardona P. J., Alonso Rodriguez N., Gordillo S., Ruiz Serrano M. J., Bouza E.. 2005; Association between the infectivity of Mycobacterium tuberculosis strains and their efficiency for extrarespiratory infection. J Infect Dis192:2059–2065
    [Google Scholar]
  18. Hisert K. B., Kirksey M. A., Gomez J. E., Sousa A. O., Cox J. S., Jacobs W. R. Jr, Nathan C. F., McKinney J. D.. 2004; Identification of Mycobacterium tuberculosis counterimmune ( cim) mutants in immunodeficient mice by differential screening. Infect Immun72:5315–5321
    [Google Scholar]
  19. Jain M., Petzold C. J., Schelle M. W., Leavell M. D., Mougous J. D., Bertozzi C. R., Leary J. A., Cox J. S.. 2007; Lipidomics reveals control of Mycobacterium tuberculosis virulence lipids via metabolic coupling. Proc Natl Acad Sci U S A104:5133–5138
    [Google Scholar]
  20. McAdam R. A., Quan S., Smith D. A., Bardarov S., Betts J. C., Cook F. C., Hooker E. U., Lewis A. P., Woollard P.. other authors 2002; Characterization of a Mycobacterium tuberculosis H37Rv transposon library reveals insertions in 351 ORFs and mutants with altered virulence. Microbiology148:2975–2986
    [Google Scholar]
  21. Nunn P., Williams B., Floyd K., Dye C., Elzinga G., Raviglione M.. 2005; Tuberculosis control in the era of HIV. Nat Rev Immunol5:819–826
    [Google Scholar]
  22. Ormerod L. P.. 2005; Multidrug-resistant tuberculosis (MDR-TB): epidemiology, prevention and treatment. Br Med Bull73:7417–24
    [Google Scholar]
  23. Parish T., Stoker N. G.. 1998; Electroporation of mycobacteria. In Methods in Molecular Biology: Mycobacteria Protocols pp129–144 Edited by Parish T., Stoker N. G. Totowa, NJ: Humana Press;
  24. Raetz C. R., Roderick S. L.. 1995; A left-handed parallel β helix in the structure of UDP- N-acetylglucosamine acyltransferase. Science270:997–1000
    [Google Scholar]
  25. Raviglione M. C.. 2003; The TB epidemic from 1992 to 2002. Tuberculosis (Edinb83:4–14
    [Google Scholar]
  26. Rousseau C., Neyrolles O., Bordat Y., Giroux S., Sirakova T. D., Prevost M. C., Kolattukudy P. E., Gicquel B., Jackson M.. 2003; Deficiency in mycolipenate- and mycosanoate-derived acyltrehaloses enhances early interactions of Mycobacterium tuberculosis with host cells. Cell Microbiol5:405–415
    [Google Scholar]
  27. Sambrook J., Fritsch E. F., Maniatis T.. 1989; Molecular Cloning: a Laboratory Manual, 2nd edn. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
  28. Sassetti C. M., Rubin E. J.. 2003; Genetic requirements for mycobacterial survival during infection. Proc Natl Acad Sci U S A100:12989–12994
    [Google Scholar]
  29. Sassetti C. M., Boyd D. H., Rubin E. J.. 2003; Genes required for mycobacterial growth defined by high density mutagenesis. Mol Microbiol48:77–84
    [Google Scholar]
  30. Sirakova T. D., Thirumala A. K., Dubey V. S., Sprecher H., Kolattukudy P. E.. 2001; The Mycobacterium tuberculosis pks2 gene encodes the synthase for the hepta- and octamethyl-branched fatty acids required for sulfolipid synthesis. J Biol Chem276:16833–16839
    [Google Scholar]
  31. Smith R. J., Iden S. S.. 1981; Properties of calcium ionophore-induced generation of superoxide anion by human neutrophils. Inflammation5:177–192
    [Google Scholar]
  32. Soto C. Y., Cama M., Gibert I., Luquin M.. 2000; Application of an easy and reliable method for sulfolipid-1 detection in the study of its distribution in Mycobacterium tuberculosis strains. FEMS Microbiol Lett187:103–107
    [Google Scholar]
  33. Stewart G. R., Patel J., Robertson B. D., Rae A., Young D. B.. 2005; Mycobacterial mutants with defective control of phagosomal acidification. PLoS Pathog1:269–278
    [Google Scholar]
  34. Stokes R. W., Doxsee D.. 1999; The receptor-mediated uptake, survival, replication, and drug sensitivity of Mycobacterium tuberculosis within the macrophage-like cell line THP-1: a comparison with human monocyte-derived macrophages. Cell Immunol197:1–9
    [Google Scholar]
  35. Stokes R. W., Orme I. M., Collins F. M.. 1986; Role of mononuclear phagocytes in expression of resistance and susceptibility to Mycobacterium avium infections in mice. Infect Immun54:811–819
    [Google Scholar]
  36. Stokes R. W., Norris-Jones R., Brooks D. E., Beveridge T. J., Doxsee D., Thorson L. M.. 2004; The glycan-rich outer layer of the cell wall of Mycobacterium tuberculosis acts as an antiphagocytic capsule limiting the association of the bacterium with macrophages. Infect Immun72:5676–5686
    [Google Scholar]
  37. Stover C. K., de la Cruz V. F., Fuerst T. R., Burlein J. E., Benson L. A., Bennett L. T., Bansal G. P., Young J. F., Lee M. H.. other authors 1991; New use of BCG for recombinant vaccines. Nature351:456–460
    [Google Scholar]
  38. Takayama K., Schnoes H. K., Armstrong E. L., Boyle R. W.. 1975; Site of inhibitory action of isoniazid in the synthesis of mycolic acids in Mycobacterium tuberculosis. J Lipid Res16:308–317
    [Google Scholar]
  39. Trivedi O. A., Arora P., Sridharan V., Tickoo R., Mohanty D., Gokhale R. S.. 2004; Enzymic activation and transfer of fatty acids as acyl-adenylates in mycobacteria. Nature428:441–445
    [Google Scholar]
  40. Villeneuve C., Etienne G., Abadie V., Montrozier H., Bordier C., Laval F., Daffe M., Maridonneau-Parini I., Astarie-Dequeker C.. 2003; Surface-exposed glycopeptidolipids of Mycobacterium smegmatis specifically inhibit the phagocytosis of mycobacteria by human macrophages. Identification of a novel family of glycopeptidolipids. J Biol Chem278:51291–51300
    [Google Scholar]
  41. Vuorio R., Harkonen T., Tolvanen M., Vaara M.. 1994; The novel hexapeptide motif found in the acyltransferases LpxA and LpxD of lipid A biosynthesis is conserved in various bacteria. FEBS Lett337:289–292
    [Google Scholar]
  42. Waddell S. J., Chung G. A., Gibson K. J. C., Everett M. J., Minnikin D. E., Besra G. S., Butcher P. D.. 2005; Inactivation of polyketide synthase and related genes results in the loss of complex lipids in Mycobacterium tuberculosis H37Rv. Lett Appl Microbiol40:201–206
    [Google Scholar]
  43. Wenzel C. Q., Daniels C., Keates R. A., Brewer D., Lam J. S.. 2005; Evidence that WbpD is an N-acetyltransferase belonging to the hexapeptide acyltransferase superfamily and an important protein for O-antigen biosynthesis in Pseudomonas aeruginosa PAO1. Mol Microbiol57:1288–1303
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.2007/007864-0
Loading
/content/journal/micro/10.1099/mic.0.2007/007864-0
Loading

Data & Media loading...

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error