1887

Abstract

A recombinant strain transformed with xylose reductase (XR) and xylitol dehydrogenase (XDH) genes from (XR and XDH, respectively) has the ability to convert xylose to ethanol together with the unfavourable excretion of xylitol, which may be due to intercellular redox imbalance caused by the different coenzyme specificity between NADPH-preferring XR and NAD-dependent XDH. In this study, we focused on the effect(s) of mutated NADH-preferring XR in fermentation. The R276H and K270R/N272D mutants were improved 52- and 146-fold, respectively, in the ratio of NADH/NADPH in catalytic efficiency [( / with NADH)/( / with NADPH)] compared with the wild-type (WT), which was due to decrease of with NADPH in the R276H mutant and increase of with NADPH in the K270R/N272D mutant. Furthermore, R276H mutation led to significant thermostabilization in XR. The most positive effect on xylose fermentation to ethanol was found by using the Y-R276H strain, expressing XR R276H mutant and XDH WT: 20 % increase of ethanol production and 52 % decrease of xylitol excretion, compared with the Y-WT strain expressing XR WT and XDH WT. Measurement of intracellular coenzyme concentrations suggested that maintenance of the of NADPH/NADP and NADH/NAD ratios is important for efficient ethanol fermentation from xylose by recombinant .

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.2007/007856-0
2007-09-01
2019-11-13
Loading full text...

Full text loading...

/deliver/fulltext/micro/153/9/3044.html?itemId=/content/journal/micro/10.1099/mic.0.2007/007856-0&mimeType=html&fmt=ahah

References

  1. Banta, S., Swanson, B. A., Wu, S., Jarnagin, A. & Anderson, S. ( 2002a; ). Alteration of the specificity of the cofactor-binding pocket of Corynebacterium 2,5-diketo-d-gluconic acid reductase A. Protein Eng 15, 131–140.[CrossRef]
    [Google Scholar]
  2. Banta, S., Swanson, B. A., Wu, S., Jarnagin, A. & Anderson, S. ( 2002b; ). Optimizing an artificial metabolic pathway: engineering the cofactor specificity of Corynebacterium 2,5-diketo-d-gluconic acid reductase for use in vitamin C biosynthesis. Biochemistry 41, 6226–6236.[CrossRef]
    [Google Scholar]
  3. Bergmeyer, H. U. ( 1985; ). Nicotinamide-adenine dinucleotides and dinucleotide phosphates (NAD, NADP, NADH, NADPH). In Methods of Enzymatic Analysis, 3rd edn, vol. VII. Weinheim: VCH.
  4. Chen, Z., Lee, W. R. & Chang, S. H. ( 1991; ). Role of aspartic acid 38 in the cofactor specificity of Drosophila alcohol dehydrogenase. Eur J Biochem 202, 263–267.[CrossRef]
    [Google Scholar]
  5. Ellis, E. M. ( 2002; ). Microbial aldo-keto reductases. FEMS Microbiol Lett 216, 123–131.[CrossRef]
    [Google Scholar]
  6. Gietz, D., St Jean, A., Woods, R. A. & Schiestl, S. H. ( 1992; ). Improved method for high efficiency transformation of intact yeast cells. Nucleic Acids Res 20, 1425 [CrossRef]
    [Google Scholar]
  7. Grimshaw, C. E., Matthews, D. A., Varughese, K. I., Skinner, M., Xuong, N. H., Bray, T., Hoch, J. & Whiteley, J. M. ( 1992; ). Catalytic effectiveness of human aldose reductase: critical role of C-terminal domain. J Biol Chem 267, 15334–15339.
    [Google Scholar]
  8. Jeffries, T. W. ( 1983; ). Utilization of xylose by bacteria, yeasts, and fungi. Adv Biochem Eng Biotechnol 27, 1–32.
    [Google Scholar]
  9. Jeffries, T. W. ( 1985; ). Emerging technology for fermenting d-xylose. Trends Biotechnol 3, 208–212.[CrossRef]
    [Google Scholar]
  10. Jeffries, T. W. & Jin, Y. S. ( 2004; ). Metabolic engineering for improved fermentation of pentoses by yeasts. Appl Microbiol Biotechnol 63, 495–509.[CrossRef]
    [Google Scholar]
  11. Jeppsson, M., Johansson, B., Hahn-Hägerdal, B. & Gorwa-Grauslund, M. F. ( 2002; ). Reduced oxidative pentose phosphate pathway flux in recombinant xylose-utilizing Saccharomyces cerevisiae strains improves the ethanol yield from xylose. Appl Environ Microbiol 68, 1604–1609.[CrossRef]
    [Google Scholar]
  12. Jeppsson, M., Bengtsson, O., Katja, F., Lee, H., Hahn-Hägerdal, B. & Gorwa-Grauslund, M. F. ( 2006; ). The expression of a Pichia stipitis xylose reductase mutant with higher K M for NADPH increases ethanol production from xylose recombinant Saccharomyces cerevisiae. Biotechnol Bioeng 93, 665–673.[CrossRef]
    [Google Scholar]
  13. Kang, Y. S., Kane, J., Kurjan, K., Stadel, J. M. & Tipper, D. J. ( 1990; ). Effects of expression of mammalian Gα and hybrid mammalian-yeast Gα proteins on the yeast pheromone response signal transduction pathway. Mol Cell Biol 10, 2582–2590.
    [Google Scholar]
  14. Karhumaa, K., Sanchez, R. G., Hahn-Hägerdal, B. & Gorwa-Grauslund, M. F. ( 2007; ). Comparison of the xylose reductase-xylitol dehydrogenase and the xylose isomerase pathways for xylose fermentation by recombinant Saccharomyces cerevisiae. Microb Cell Fact 6, 5 [CrossRef]
    [Google Scholar]
  15. Kavanagh, K. L., Klimacek, M., Nidetzky, B. & Wilson, D. K. ( 2002; ). The structure of apo and holo forms of xylose reductase, a dimeric aldo-keto reductase from Candida tenuis. Biochemistry 41, 8785–8795.[CrossRef]
    [Google Scholar]
  16. Kavanagh, K. L., Klimacek, M., Nidetzky, B. & Wilson, D. K. ( 2003; ). Structure of xylose reductase bound to NAD+ and the basis for single and dual co-substrate specificity in family 2 aldo-keto reductases. Biochem J 373, 319–326.[CrossRef]
    [Google Scholar]
  17. Klimacek, M., Wuhrer, F., Kavanagh, K. L., Wilson, D. K. & Nidetzky, B. ( 2003; ). Altering dimer contacts in xylose reductase from Candida tenuis by site-directed mutagenesis: structural and functional properties of R180A mutant. Chem Biol Interact 143–144, 523–532.
    [Google Scholar]
  18. Kostrzynska, M., Sopher, C. R. & Lee, H. ( 1998; ). Mutational analysis of the role of the conserved lysine-270 in the Pichia stipitis xylose reductase. FEMS Microbiol Lett 159, 107–112.[CrossRef]
    [Google Scholar]
  19. Kurtzman, C. P. ( 1994; ). Molecular taxonomy of the yeasts. Yeast 10, 1727–1740.[CrossRef]
    [Google Scholar]
  20. Kuyper, M., Harhangi, H. R., Stave, A. K., Winkler, A. A., Jetten, M. S., de Laat, W. T., den Ridder, J. J., Op den Camp, H. J., van Dijken, J. P. & Pronk, J. T. ( 2003; ). High-level functional expression of a fungal xylose isomerase: the key to efficient ethanolic fermentation of xylose by Saccharomyces cerevisiae?. FEMS Yeast Res 4, 69–78.[CrossRef]
    [Google Scholar]
  21. Laemmli, U. K. ( 1970; ). Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227, 680–685.[CrossRef]
    [Google Scholar]
  22. Lee, J. K, Koo, B. S. & Kim, S. Y. ( 2003; ). Cloning and characterization of the xyl1 gene, encoding an NADH-preferring xylose reductase from Candida parapsilosis, and its functional expression in Candida tropicalis. Appl Environ Microbiol 69, 6179–6188.[CrossRef]
    [Google Scholar]
  23. Leitgeb, S., Petschacher, B., Wilson, D. K. & Nidetzky, B. ( 2005; ). Fine tuning of coenzyme specificity in family 2 aldo-keto reductases revealed by crystal structures of the Lys-274→Arg mutant of Candida tenuis xylose reductase (AKR2B5) bound to NAD+ and NADP+. FEBS Lett 579, 763–767.[CrossRef]
    [Google Scholar]
  24. Metzger, M. H. & Hollenberg, C. P. ( 1995; ). Amino acid substitutions in the yeast Pichia stipitis xylitol dehydrogenase coenzyme-binding domain affect the coenzyme specificity. Eur J Biochem 228, 50–54.[CrossRef]
    [Google Scholar]
  25. Nikawa, J., Sass, P. & Wigler, M. ( 1987; ). Cloning and characterization of the low-affinity cyclic AMP phosphodiesterase gene of Saccharomyces cerevisiae. Mol Cell Biol 7, 3629–3636.
    [Google Scholar]
  26. Nissen, T. L., Anderlund, M., Nielsen, J., Villadsen, J. & Kielland-Brandt, M. C. ( 2001; ). Expression of a cytoplasmic transhydrogenase in Saccharomyces cerevisiae results in formation of 2-oxoglutarate due to depletion of the NADPH pool. Yeast 18, 19–32.[CrossRef]
    [Google Scholar]
  27. Petschacher, B. & Nidetzky, B. ( 2005; ). Engineering Candida tenuis xylose reductase for improved utilization of NADH: antagonistic effects of multiple side chain replacements and performance of site-directed mutants under simulated in vivo conditions. Appl Environ Microbiol 71, 6390–6393.[CrossRef]
    [Google Scholar]
  28. Petschacher, B., Leitgeb, S., Kavanagh, K. L., Wilson, D. K. & Nidetzky, B. ( 2005; ). The coenzyme specificity of Candida tenuis xylose reductase (AKR2B5) explored by site-directed mutagenesis and X-ray crystallography. Biochem J 385, 75–83.[CrossRef]
    [Google Scholar]
  29. Richard, P., Toivari, M. H. & Penttilä, M. ( 1999; ). Evidence that the gene YLR070c of Saccharomyces cerevisiae encodes a xylitol dehydrogenase. FEBS Lett 457, 135–138.[CrossRef]
    [Google Scholar]
  30. Rizzi, M., Harwart, K., Erlemann, P., Buithanh, N. A. & Dellweg, H. ( 1989; ). Purification and properties of the NAD+-xylitol-dehydrogenase from the yeast Pichia stipitis. J Ferment Bioeng 67, 20–24.[CrossRef]
    [Google Scholar]
  31. Roca, C., Nielsen, J. & Olsson, L. ( 2003; ). Metabolic engineering of ammonium assimilation in xylose-fermenting Saccharomyces cerevisiae improves ethanol production. Appl Environ Microbiol 69, 4732–4736.[CrossRef]
    [Google Scholar]
  32. Serov, A. E., Popova, A. S., Fedorchuk, V. V. & Tishkov, V. I. ( 2002; ). Engineering of coenzyme specificity of formate dehydrogenase from Saccharomyces cerevisiae. Biochem J 367, 841–847.[CrossRef]
    [Google Scholar]
  33. Steen, I. H., Lien, T., Madsen, M. S. & Birkeland, N. K. ( 2002; ). Identification of cofactor discrimination sites in NAD-isocitrate dehydrogenase from Pyrococcus furiosus. Arch Microbiol 178, 297–300.[CrossRef]
    [Google Scholar]
  34. Träff, K. L., Jönsson, L. J. & Hahn-Hägerdal, B. ( 2002; ). Putative xylose and arabinose reductases in Saccharomyces cerevisiae. Yeast 19, 1233–1241.[CrossRef]
    [Google Scholar]
  35. Verduyn, C., Van Kleef, R., Frank, J., Schreuder, H., Van Dijken, J. P. & Scheffers, W. A. ( 1985; ). Properties of the NAD(P)H-dependent xylose reductase from the xylose-fermenting yeast Pichia stipitis. Biochem J 226, 669–677.
    [Google Scholar]
  36. Verho, R., Londesborough, J., Penttilä, M. & Richard, P. ( 2003; ). Engineering redox cofactor regeneration for improved pentose fermentation in Saccharomyces cerevisiae. Appl Environ Microbiol 69, 5892–5897.[CrossRef]
    [Google Scholar]
  37. Watanabe, S., Kodaki, T. & Makino, K. ( 2005; ). Complete reversal of coenzyme specificity of xylitol dehydrogenase and increase of thermostability by the introduction of structural zinc. J Biol Chem 280, 10340–10349.[CrossRef]
    [Google Scholar]
  38. Watanabe, S., Saleh, A. A., Pack, S. P., Annaluru, N., Kodaki, T. & Makino, K. ( 2007; ). Ethanol production from xylose by recombinant Saccharomyces cerevisiae expressing protein engineered NADP+-dependent xylitol dehydrogenase. J Biotechnol 130, 316–319.[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.2007/007856-0
Loading
/content/journal/micro/10.1099/mic.0.2007/007856-0
Loading

Data & Media loading...

Supplements

Primers used for PsXR mutations [ PDF] (52 kb) Xylose fermentation of Y-WT and Y-R276H under anaerobic conditions [ PDF] (58 kb)

PDF

Primers used for PsXR mutations [ PDF] (52 kb) Xylose fermentation of Y-WT and Y-R276H under anaerobic conditions [ PDF] (58 kb)

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error